Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells

Abstract

The parameters specifying whether autoreactive CD4+ thymocytes are deleted (recessive tolerance) or differentiate into regulatory T cells (dominant tolerance) remain unresolved. Dendritic cells directly delete thymocytes, partly through cross-presentation of peripheral antigens 'promiscuously' expressed in medullary thymic epithelial cells (mTECs) positive for the autoimmune regulator Aire. It is unclear if and how mTECs themselves act as antigen-presenting cells during tolerance induction. Here we found that an absence of major histocompatibility class II molecules on mTECs resulted in fewer polyclonal regulatory T cells. Furthermore, targeting of a model antigen to Aire+ mTECs led to the generation of specific regulatory T cells independently of antigen transfer to dendritic cells. Thus, 'routing' of mTEC-derived self antigens may determine whether specific thymocytes are deleted or enter the regulatory T cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of polyclonal Foxp3+CD25+ Treg cells by MHC class II expressed exclusively on thymic epithelium.
Figure 2: In situ detection of Foxp3+ cells in MHC class II–positive or MHC class II–negative medullary 'islands' in mixed RTOCs.
Figure 3: Medulla-specific expression of HA-GFP with bacterial artificial chromosome transgenesis.
Figure 4: Generation of Foxp3+CD25+ Treg cells in AIRE-HA × TCR-HA mice.
Figure 5: Expression of HA in AIRE-HA thymic epithelium but not expression in hematopoietic cells recapitulates the phenotype of AIRE-HA × TCR-HA mice.
Figure 6: Display of HA(107–119) by isolated mTECs and DCs but not by cTECs from AIRE-HA thymi.
Figure 7: Efficient generation of Foxp3+CD25+ Treg cells independently of cross-presentation by hematopoietic cells.

Similar content being viewed by others

References

  1. Le Douarin, N. et al. Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev. 149, 35–53 (1996).

    Article  CAS  Google Scholar 

  2. Modigliani, Y. et al. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol. 26, 1807–1815 (1996).

    Article  CAS  Google Scholar 

  3. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  4. Maloy, K.J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).

    Article  CAS  Google Scholar 

  5. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  6. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  Google Scholar 

  7. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  8. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  9. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249–259 (2006).

    Article  CAS  Google Scholar 

  10. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  11. Cabarrocas, J. et al. Foxp3+CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl. Acad. Sci. USA 103, 8453–8458 (2006).

    Article  CAS  Google Scholar 

  12. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  13. Kawahata, K. et al. Generation of CD4+CD25+ regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J. Immunol. 168, 4399–4405 (2002).

    Article  CAS  Google Scholar 

  14. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  Google Scholar 

  15. Lerman, M.A., Larkin, J., III, Cozzo, C., Jordan, M.S. & Caton, A.J. CD4+CD25+ regulatory T cell repertoire formation in response to varying expression of a neo-self-antigen. J. Immunol. 173, 236–244 (2004).

    Article  CAS  Google Scholar 

  16. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  Google Scholar 

  17. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    Article  CAS  Google Scholar 

  18. Fontenot, J.D., Dooley, J.L., Farr, A.G. & Rudensky, A.Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    Article  CAS  Google Scholar 

  19. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  20. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  21. Su, M.A. & Anderson, M.S. Aire: an update. Curr. Opin. Immunol. 16, 746–752 (2004).

    Article  CAS  Google Scholar 

  22. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  Google Scholar 

  23. Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  Google Scholar 

  24. Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  Google Scholar 

  25. Mathis, D. & Benoist, C. Back to central tolerance. Immunity 20, 509–516 (2004).

    Article  CAS  Google Scholar 

  26. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).

    Article  CAS  Google Scholar 

  27. Viret, C., Barlow, A.K. & Janeway, C.A., Jr. On the intrathymic intercellular transfer of self-determinants. Immunol. Today 20, 8–10 (1999).

    Article  CAS  Google Scholar 

  28. Humblet, C., Rudensky, A. & Kyewski, B. Presentation and intercellular transfer of self antigen within the thymic microenvironment: expression of the Eα peptide-I-Ab complex by isolated thymic stromal cells. Int. Immunol. 6, 1949–1958 (1994).

    Article  CAS  Google Scholar 

  29. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  Google Scholar 

  30. Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    Article  CAS  Google Scholar 

  31. Liu, Y.J. A unified theory of central tolerance in the thymus. Trends Immunol. 27, 215–221 (2006).

    Article  Google Scholar 

  32. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  33. Thorstenson, K.M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    Article  CAS  Google Scholar 

  34. Jenkinson, E.J. & Anderson, G. Fetal thymic organ cultures. Curr. Opin. Immunol. 6, 293–297 (1994).

    Article  CAS  Google Scholar 

  35. Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H. & Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768 (2001).

    Article  CAS  Google Scholar 

  36. van Meerwijk, J.P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    Article  CAS  Google Scholar 

  37. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    Article  CAS  Google Scholar 

  38. Kirberg, J. et al. Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J. Exp. Med. 180, 25–34 (1994).

    Article  CAS  Google Scholar 

  39. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp. Med. 185, 541–550 (1997).

    Article  CAS  Google Scholar 

  40. Bot, A., Bot, S., Antohi, S., Karjalainen, K. & Bona, C. Kinetics of generation and persistence on membrane class II molecules of a viral peptide expressed on foreign and self proteins. J. Immunol. 157, 3436–3442 (1996).

    CAS  PubMed  Google Scholar 

  41. Ribot, J., Romagnoli, P. & van Meerwijk, J.P. Agonist ligands expressed by thymic epithelium enhance positive selection of regulatory T lymphocytes from precursors with a normally diverse TCR repertoire. J. Immunol. 177, 1101–1107 (2006).

    Article  CAS  Google Scholar 

  42. Rossi, S.W., Jenkinson, W.E., Anderson, G. & Jenkinson, E.J. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441, 988–991 (2006).

    Article  CAS  Google Scholar 

  43. Bleul, C.C. et al. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441, 992–996 (2006).

    Article  CAS  Google Scholar 

  44. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    Article  CAS  Google Scholar 

  45. King, C.G. et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat. Med. 12, 1088–1092 (2006).

    Article  CAS  Google Scholar 

  46. Klein, L., Roettinger, B. & Kyewski, B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur. J. Immunol. 31, 2476–2486 (2001).

    Article  CAS  Google Scholar 

  47. Lohr, J., Knoechel, B., Kahn, E.C. & Abbas, A.K. Role of B7 in T cell tolerance. J. Immunol. 173, 5028–5035 (2004).

    Article  CAS  Google Scholar 

  48. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  49. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    Article  CAS  Google Scholar 

  50. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    Article  CAS  Google Scholar 

  51. van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  Google Scholar 

  52. Jiang, Q., Su, H., Knudsen, G., Helms, W. & Su, L. Delayed functional maturation of natural regulatory T cells in the medulla of postnatal thymus: role of TSLP. BMC Immunol. 7, 6 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.S. Anderson, B. Kyewski and J. Derbinski for comments on the manuscript. K. Karjalainen (Nanyung Technological University) provided the A5 hybridoma; A. Rudensky (University of Washington) provided Foxp3-specific polyclonal rabbit serum; R. Boyd (Monash Medical School) provided MTS10 supernatant; and B. Kyewski (German Cancer Research Center) provided biotinylated antibody to MHC class II. Supported by Boehringer Ingelheim (Research Institute of Molecular Pathology), the European Union (Euro-Thymaide FP6 Integrated Project; LSHB-CT-2003-503410) and the Austrian National Science Fund (Z58-B01 and Sonderforschungsbereich F023).

Author information

Authors and Affiliations

Authors

Contributions

K.A. generated and analyzed AIRE-HA × TCR-HA mice; L.M.D. did the RTOC experiments; E.H.V. generated and analyzed AIRE-OVA × DO11.10 mice together with J.E.; M.H. contributed to the generation and analysis of nude chimeras; L.K.S. and A.R. generated and analyzed CD11c-HA × TCR-HA mice (Supplementary Fig. 3); and L.K. prepared the manuscript.

Corresponding author

Correspondence to Ludger Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generation of mixed RTOC, outline of the experimental procedure. (PDF 594 kb)

Supplementary Fig. 2

A distinct population of TCR-HA+CD25+Foxp3+ cells among peripheral CD4+ T cells in AIRE-HA × TCR-HA mice. (PDF 963 kb)

Supplementary Fig. 3

Targeting of HA to DCs in CD11c-HA × TCR-HA mice results in efficient intra-thymic deletion of TCR-HA+ cells. (PDF 76 kb)

Supplementary Fig. 4

Targeting of OVA to mTECs leads to generation of OVA–specific CD25+Foxp3+ Treg cells. (PDF 107 kb)

Supplementary Fig. 5

Presentation of HA(107-119) by DCs resulting from capture of mTEC-derived antigen. (PDF 57 kb)

Supplementary Methods (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschenbrenner, K., D'Cruz, L., Vollmann, E. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8, 351–358 (2007). https://doi.org/10.1038/ni1444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing