Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment

Abstract

Lymphocyte homing is mediated by specific interaction between L-selectin on lymphocytes and the carbohydrate ligand 6-sulfo sialyl Lewis X on high endothelial venules. Here we generated mice lacking both core 1 extension and core 2 branching enzymes to assess the functions of O-glycan-borne L-selectin ligands in vivo. Mutant mice maintained robust lymphocyte homing, yet they lacked O-glycan L-selectin ligands. Biochemical analyses identified a class of N-glycans bearing the 6-sulfo sialyl Lewis X L-selectin ligand in high endothelial venules. These N-glycans supported the binding of L-selectin to high endothelial venules in vitro and contributed in vivo to O-glycan-independent lymphocyte homing in wild-type and mutant mice. Our results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core1-β3GlcNAcT-deficient mice have no MECA-79 antigen.
Figure 2: Lymphocyte trafficking in Core1-β3GlcNAcT-deficient mice.
Figure 3: Expression of L-selectin and E-selectin ligands.
Figure 4: Lymphocyte trafficking in double-knockout mice.
Figure 5: N-glycan-based L-selectin ligands in double-knockout and wild-type mice.
Figure 6: N-glycans in double-knockout and wild-type mice contain 6-sulfo sLex and support lymphocyte rolling.
Figure 7: N-glycan-based L-selectin ligands and contact hypersensitivity.

Similar content being viewed by others

References

  1. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  2. Marchesi, V.T. & Gowans, J.L. The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc. R. Soc. Lond. B Biol. Sci. 159, 283–290 (1964).

    Article  CAS  Google Scholar 

  3. Arbones, M.L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260 (1994).

    Article  CAS  Google Scholar 

  4. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  5. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  6. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  7. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  Google Scholar 

  8. Chen, S., Kawashima, H., Lowe, J.B., Lanier, L.L. & Fukuda, M. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J. Exp. Med. 202, 1679–1689 (2005).

    Article  CAS  Google Scholar 

  9. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  Google Scholar 

  10. Homeister, J.W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  Google Scholar 

  11. Kawashima, H. et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat. Immunol. 6, 1096–1104 (2005).

    Article  CAS  Google Scholar 

  12. Uchimura, K. et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat. Immunol. 6, 1105–1113 (2005).

    Article  CAS  Google Scholar 

  13. Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl LewisX, an L-selectin ligand displayed by CD34. Immunity 11, 79–89 (1999).

    Article  CAS  Google Scholar 

  14. Bierhuizen, M.F. & Fukuda, M. Expression cloning of a cDNA encoding UDP-GlcNAc:Galβ1-3-GalNAc-R (GlcNAc to GalNAc)β1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc. Natl. Acad. Sci. USA 89, 9326–9330 (1992).

    Article  CAS  Google Scholar 

  15. Ellies, L.G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890 (1998).

    Article  CAS  Google Scholar 

  16. Hiraoka, N. et al. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. J. Biol. Chem. 279, 3058–3067 (2004).

    Article  CAS  Google Scholar 

  17. Yeh, J.C. et al. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1,3-N-acetylglucosaminyltransferase. Cell 105, 957–969 (2001).

    Article  CAS  Google Scholar 

  18. Streeter, P.R., Rouse, B.T. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  Google Scholar 

  19. Aoki, D., Lee, N., Yamaguchi, N., Dubois, C. & Fukuda, M.N. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc. Natl. Acad. Sci. USA 89, 4319–4323 (1992).

    Article  CAS  Google Scholar 

  20. M'Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α(1,3)-fucosyltransferase-IV. J. Exp. Med. 198, 1301–1312 (2003).

    Article  CAS  Google Scholar 

  21. Gauguet, J.M., Rosen, S.D., Marth, J.D. & von Andrian, U.H. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B- and T-lymphocyte homing to peripheral lymph nodes. Blood 104, 4104–4112 (2004).

    Article  CAS  Google Scholar 

  22. Hemmerich, S., Leffler, H. & Rosen, S.D. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047 (1995).

    Article  CAS  Google Scholar 

  23. Kanamori, A. et al. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation totyrosine sulfation, whereas P-selectin does not. J. Biol. Chem. 277, 32578–32586 (2002).

    Article  CAS  Google Scholar 

  24. Lasky, L.A. et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69, 927–938 (1992).

    Article  CAS  Google Scholar 

  25. Wang, L., Fuster, M., Sriramarao, P. & Esko, J.D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    Article  CAS  Google Scholar 

  26. Lowe, J.B. Glycosylation, immunity, and autoimmunity. Cell 104, 809–812 (2001).

    Article  CAS  Google Scholar 

  27. Laakkonen, P., Porkka, K., Hoffman, J.A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med. 8, 751–755 (2002).

    Article  CAS  Google Scholar 

  28. Cummings, R.D. & Kornfield, S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11230–11234 (1982).

    CAS  PubMed  Google Scholar 

  29. Rosen, S.D., Tsay, D., Singer, M.S., Hemmerich, S. & Abraham, W.M. Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am. J. Pathol. 166, 935–944 (2005).

    Article  CAS  Google Scholar 

  30. Finger, E.B. et al. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379, 266–269 (1996).

    Article  CAS  Google Scholar 

  31. Steegmaier, M. et al. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373, 615–620 (1995).

    Article  CAS  Google Scholar 

  32. Clark, R.A., Fuhlbrigge, R.C. & Springer, T.A. L-selectin ligands that are O-glycoprotease resistant and distinct from MECA-79 antigen are sufficient for tethering and rolling of lymphocytes on human high endothelial venules. J. Cell. Biol. 140, 721–731 (1998).

    Article  CAS  Google Scholar 

  33. Liu, W. et al. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J. Biol. Chem. 273, 7078–7087 (1998).

    Article  CAS  Google Scholar 

  34. Leppanen, A., Yago, T., Otto, V.I., McEver, R.P. & Cummings, R.D. Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 278, 26391–26400 (2003).

    Article  Google Scholar 

  35. Martinez, M. et al. Regulation of PSGL-1 interactions with L-selectin, P-selectin, and E-selectin: role of human fucosyltransferase-IV and -VII. J. Biol. Chem. 280, 5378–5390 (2005).

    Article  CAS  Google Scholar 

  36. Baumheter, S. et al. Binding of L-selectin to the vascular sialomucin CD34. Science 262, 436–438 (1993).

    Article  CAS  Google Scholar 

  37. Sassetti, C., Tangemann, K., Singer, M.S., Kershaw, D.B. & Rosen, S.D. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34. J. Exp. Med. 187, 1965–1975 (1998).

    Article  CAS  Google Scholar 

  38. Morgan, S.M., Samulowitz, U., Darley, L., Simmons, D.L. & Vestweber, D. Biochemical characterization and molecular cloning of a novel endothelial-specific sialomucin. Blood 93, 165–175 (1999).

    CAS  PubMed  Google Scholar 

  39. Fieger, C.B., Sassetti, C.M. & Rosen, S.D. Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modification with tyrosine sulfation and sialyl Lewis x. J. Biol. Chem. 278, 27390–27398 (2003).

    Article  CAS  Google Scholar 

  40. Briskin, M.J., McEvoy, L.M. & Butcher, E.C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 363, 461–464 (1993).

    Article  CAS  Google Scholar 

  41. Coltart, D.M. et al. Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, di-, tri-, and hexasaccharide glycodomains. J. Am. Chem. Soc. 124, 9833–9844 (2002).

    Article  CAS  Google Scholar 

  42. Cyster, J.G., Shotton, D.M. & Williams, A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 10, 893–902 (1991).

    Article  CAS  Google Scholar 

  43. Li, F. et al. Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J. Biol. Chem. 271, 6342–6348 (1996).

    Article  CAS  Google Scholar 

  44. Phan, U.T., Waldron, T.T. & Springer, T.A. Remodeling of the lectin-EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat. Immunol. 7, 883–889 (2006).

    Article  CAS  Google Scholar 

  45. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).

    Article  CAS  Google Scholar 

  46. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6, 497–506 (2005).

    Article  CAS  Google Scholar 

  47. Ley, K., Tedder, T.F. & Kansas, G.S. L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin. Blood 82, 1632–1638 (1993).

    CAS  PubMed  Google Scholar 

  48. Ohmori, K. et al. Identification of cutaneous lymphocyte-associated antigen as sialyl 6-sulfo Lewis X, a selectin ligand expressed on a subset of skin-homing helper memory T cells. Blood 107, 3197–3204 (2006).

    Article  CAS  Google Scholar 

  49. Kobayashi, M. et al. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 101, 17807–17812 (2004).

    Article  CAS  Google Scholar 

  50. Renkonen, J., Tynninen, O., Hayry, P., Paavonen, T. & Renkonen, R. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am. J. Pathol. 161, 543–550 (2002).

    Article  CAS  Google Scholar 

  51. van Zante, A. et al. Lymphocyte-HEV interactions in lymph nodes of a sulfotransferase-deficient mouse. J. Exp. Med. 198, 1289–1300 (2003).

    Article  CAS  Google Scholar 

  52. Mitoma, J. et al. Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis X-type L-selectin ligand activity. J. Biol. Chem. 278, 9953–9961 (2003).

    Article  CAS  Google Scholar 

  53. Mitoma, J. & Fukuda, M. in Methods in Enzymology vol. 416 (ed. Fukuda, M.) 293–304 (Academic, San Diego, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank S. Rosen, R. Cummings and M.N. Fukuda for discussions; Y. Altman for cell sorting; K. Sun for technical assistance; E. Lamar for critical reading of the manuscript; and A. Morse and T. Mabry for organizing the manuscript. S. Rosen (University of California at San Francisco) provided 38C13 B lymphoma cells. Supported by the National Institutes of Health (CA48737 to M.F.; P01 CA71932 to M.F. and J.B.L.; AI061663, AI069259 and AR42689 to U.H.v.A.; and DK48247 to J.D.M.) and the Taiwan National Science Council (95-3112-B-001-014 to the National Core Facilities for Proteomics (for mass spectrometry)).

Author information

Authors and Affiliations

Authors

Contributions

J.M. and X.B. did most of the experiments; B.P. did the rolling assays; P.S. and J.-M.G. did intravital microscopy; S.-Y.Y. did mass spectrometry; H.K. and H.S. assisted with the lymphocyte homing assay; K.O. and J.D.M. did embryonic stem cell culture; J.M., X.B., K.-H.K., U.H.v.A. and J.B.L. contributed to the preparation of the manuscript; and M.F. conceptualized the work, organized all experiments and wrote the manuscript.

Corresponding author

Correspondence to Minoru Fukuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structure and biosynthesis of L-selectin ligands and Core1-β3GlcNAc knockout. (PDF 401 kb)

Supplementary Fig. 2

MECA-79 antibody inhibited lymphocyte homing in WT but not in Core1-β3GlcNAcT (C1-E) KO mice. (PDF 235 kb)

Supplementary Fig. 3

Effects of enzymatic digestions on binding of L-selectin-IgM to HEV. (PDF 162 kb)

Supplementary Fig. 4

Binding of N-glycan-specific lectins in HEV and their effects in inhibiting L-selectin-IgM binding. (PDF 439 kb)

Supplementary Fig. 5

MALDI-MS analysis of permethylated, sulfated N-glycans in negative ion mode. (PDF 663 kb)

Supplementary Fig. 6

Specificity of anti-CD34 antibody and number of leukocytes and CD3+ lymphocytes in contact hypersensitivity (CHS). (PDF 353 kb)

Supplementary Table 1

Tentative assignment of the MALDI-MS molecular ion signals afforded by the permethylated sulfated N-glycans in negative ion mode. (PDF 74 kb)

Supplementary Methods (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitoma, J., Bao, X., Petryanik, B. et al. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 8, 409–418 (2007). https://doi.org/10.1038/ni1442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing