Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FcγRIIb controls bone marrow plasma cell persistence and apoptosis

Abstract

The survival of long-lived plasma cells, which produce most serum immunoglobulin, is central to humoral immunity. We found here that the inhibitory Fc receptor FcγRIIb was expressed on plasma cells and controlled their persistence in the bone marrow. Crosslinking FcγRIIb induced apoptosis of plasma cells, which we propose contributes to the control of their homeostasis and suggests a method for therapeutic deletion. Plasma cells from mice prone to systemic lupus erythematosus did not express FcγRIIb and were protected from apoptosis. Human plasmablasts expressed FcγRIIb and were killed by crosslinking, as were FcγRIIb-expressing myeloma cells. Our results suggest that FcγRIIb controls bone marrow plasma cell persistence and that defects in it may contribute to autoantibody production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nonspecific immunization reduces antigen-specific bone marrow plasma cell numbers and serum IgG.
Figure 2: Plasma cells express FcγRIIb.
Figure 3: Plasma cells sustain transcription of Fcgr2b mRNA.
Figure 4: FcγRIIb and the persistence of splenic plasmablasts and long-lived bone marrow plasma cells.
Figure 5: FcγRIIb crosslinking induces apoptosis of in vitro generated plasmablasts.
Figure 6: FcγRIIb crosslinking induces apoptosis of ex vivo plasma cells.
Figure 7: FcγRIIb crosslinking and apoptosis in plasma cells from autoimmune-prone mice, human plasmablasts and myeloma cells.

References

  1. 1

    Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Smith, K.G., Hewitson, T.D., Nossal, G.J.V. & Tarlinton, D.M. The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 26, 444–448 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Ho, F., Lortan, J.E., MacLennan, I.C. & Khan, M. Distinct short-lived and long-lived antibody-producing cell populations. Eur. J. Immunol. 16, 1297–1301 (1986).

    CAS  Article  Google Scholar 

  4. 4

    McMillan, R. et al. Immunoglobulin synthesis by human lymphoid tissues: normal bone marrow as a major site of IgG production. J. Immunol. 109, 1386–1394 (1972).

    CAS  PubMed  Google Scholar 

  5. 5

    Manz, R.A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Slifka, M.K., Antia, R., Whitmire, J.K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Dilosa, R.M., Maeda, K., Masuda, A., Szakal, A.K. & Tew, J.G. Germinal center B cells and antibody production in the bone marrow. J. Immunol. 146, 4071–4077 (1991).

    CAS  PubMed  Google Scholar 

  8. 8

    Smith, K.G. et al. Bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Smith, K.G., Light, A., Nossal, G.J. & Tarlinton, D.M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Blink, E.J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Nie, Y. et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200, 1145–1156 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Muehlinghaus, G. et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 105, 3965–3971 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Manz, R.A., Lohning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Turner, C.A., Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Shaffer, A.L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Terstappen, L.W., Johnsen, S., Segers-Nolten, I.M. & Loken, M.R. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76, 1739–1747 (1990).

    CAS  PubMed  Google Scholar 

  18. 18

    Cassese, G. et al. Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31, 2726–2732 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Bernasconi, N.L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Nanan, R., Heinrich, D., Frosch, M. & Kreth, H.W. Acute and long-term effects of booster immunisation on frequencies of antigen-specific memory B-lymphocytes. Vaccine 20, 498–504 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Di Genova, G., Roddick, J., McNicholl, F. & Stevenson, F.K. Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood 107, 2806–2813 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–1621 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Ravetch, J.V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Jiang, Y. et al. Genetically determined aberrant down-regulation of FcγRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol. 11, 1685–1691 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Pearse, R.N. et al. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 10, 753–760 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Tzeng, S.J., Bolland, S., Inabe, K., Kurosaki, T. & Pierce, S.K. The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. J. Biol. Chem. 280, 35247–35254 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Mackay, M. et al. Selective dysregulation of the FcγRIIB receptor on memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Hamilton, M.S., Ball, J., Bromidge, E. & Franklin, I.M. Surface antigen expression of human neoplastic plasma cells includes molecules associated with lymphocyte recirculation and adhesion. Br. J. Haematol. 78, 60–65 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Fukuyama, H., Nimmerjahn, F. & Ravetch, J.V. The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat. Immunol. 6, 99–106 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Lalor, P.A., Nossal, G.J.V., Sanderson, R.D. & McHeyzer-Williams, M.G. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 22, 3001–3011 (1992).

    CAS  Article  Google Scholar 

  33. 33

    Strasser, A. et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann. NY Acad. Sci. 917, 541–548 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Holmes, M.C. & Burnet, F.M. The natural history of autoimmune disease in NZB mice. A comparison with the pattern of human autoimmune manifestations. Ann. Intern. Med. 59, 265–276 (1963).

    CAS  Article  Google Scholar 

  36. 36

    Hoyer, B.F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Pritchard, N.R. et al. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII. Curr. Biol. 10, 227–230 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Callanan, M.B. et al. The IgG Fc receptor, FcγRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc. Natl. Acad. Sci. USA 97, 309–314 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Floto, R.A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Kono, H. et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 14, 2881–2892 (2005).

    CAS  Article  Google Scholar 

  41. 41

    Hamilton, M.S., Ball, J., Bromidge, E., Lowe, J. & Franklin, I.M. Characterization of new IgG lambda myeloma plasma cell line (EJM): a further tool in the investigation of the biology of multiple myeloma. Br. J. Haematol. 75, 378–384 (1990).

    CAS  Article  Google Scholar 

  42. 42

    Zand, M.S. et al. Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation 79, 1507–1515 (2005).

    CAS  Article  Google Scholar 

  43. 43

    McHeyzer-Williams, M.G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Edwards, J.C. & Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394–403 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Smith, K.G., Jones, R.B., Burns, S.M. & Jayne, D.R. Long-term comparison of rituximab treatment for refractory systemic lupus erythematosus and vasculitis: remission, relapse, and re-treatment. Arthritis Rheum. 54, 2970–2982 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Bolland, S., Yim, Y.S., Tus, K., Wakeland, E.K. & Ravetch, J.V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med. 195, 1167–1174 (2002).

    CAS  Article  Google Scholar 

  47. 47

    McGaha, T.L., Sorrentino, B. & Ravetch, J.V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590–593 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665 (1991).

    CAS  Article  Google Scholar 

  49. 49

    Davies, K.A. et al. Defective Fc-dependent processing of immune complexes in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 1028–1038 (2002).

    CAS  Article  Google Scholar 

  50. 50

    Goodnow, C.C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C.G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Tsuchiya, N. & Kyogoku, C. Role of Fcγ receptor IIb polymorphism in the genetic background of systemic lupus erythematosus: insights from Asia. Autoimmunity 38, 347–352 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Su, K. et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J. Immunol. 172, 7186–7191 (2004).

    CAS  Article  Google Scholar 

  53. 53

    Blank, M.C. et al. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum. Genet. 117, 220–227 (2005).

    CAS  Article  Google Scholar 

  54. 54

    Ries, L.A.G. et al. SEER Cancer Statistics Review, 1973–1999 (National Cancer Institute, Bethesda, Maryland, 2002).

    Google Scholar 

  55. 55

    Podar, K. et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor Enzastaurin (LY317615.HCl). Blood 109, 1669–1677 (2007).

    CAS  Article  Google Scholar 

  56. 56

    Higuchi, T. et al. Cutting edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J. Immunol. 168, 9–12 (2002).

    CAS  Article  Google Scholar 

  57. 57

    Xiu, Y. et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 169, 4340–4346 (2002).

    CAS  Article  Google Scholar 

  58. 58

    Rudge, E.U., Cutler, A.J., Pritchard, N.R. & Smith, K.G.C. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B cell suppression. J. Exp. Med. 195, 1079–1085 (2002).

    CAS  Article  Google Scholar 

  59. 59

    Huntington, N.D. et al. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 7, 190–198 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Wiklund for myeloma cell lines; T. Tsubata and R.A. Floto for constructs; S. Koenig (Macrogenics) for antibodies; C. Watson for Bim-knockout mice; S. Bolland and J. Ravetch for Fcgr2b−/− mice; L. Willcocks, A. Rankin, W. Ouwehand and N. Watkins and the staff and donors of the National Blood Service Cambridge Apheresis Clinic for human primary lymphocyte preparation; and P. Lyons and A. Strasser for advice. FcγRIIb-deficient mice on the BALB/c and C57BL/6 backgrounds were provided by J.V. Ravetch and S. Bolland (Rockefeller University); FCS Press software was from R. Hicks (University of Cambridge); EJM and LP-1 cells were from H. Wiklund (Uppsala University); and the construct expressing human FcγRIIb was from R.A. Floto (University of Cambridge). Supported by the Wellcome Trust (067543AIA), Deutsche Forschungsgemeinschaft (MA 2273/2-4 and MA 2273/4-2 to R.A.M.) and the National Health and Medical Research Council of Australia (D.M.T., K.F. and K.E.L.).

Author information

Affiliations

Authors

Contributions

A.J.C. mainly contributed to Figures 1,2,3,4e in collaboration with E.U.W., K.F., R.A.M. and D.M.T; Z.X. mainly contributed to Figures 4f,5,6,7 with contributions from R.J.B., K.E.L. and E.S.; A.J.C. and R.J.B. generated the transgenic mice; K.G.C.S. conceived and directed the experiments; and Z.X. and K.G.C.S. wrote the paper with input from all authors.

Corresponding author

Correspondence to Kenneth G C Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Plasma cell purification and FcγRIIb expression. (PDF 119 kb)

Supplementary Fig. 2

Adoptive transfer of splenocytes does not induce a primary response. (PDF 162 kb)

Supplementary Fig. 3

FcγRIIb does not affect Ig secretion by individual plasma cells. (PDF 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiang, Z., Cutler, A., Brownlie, R. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8, 419–429 (2007). https://doi.org/10.1038/ni1440

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing