Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key factors in the organized chaos of early T cell development

Abstract

A fundamental issue in T cell development is what controls whether a thymocyte differentiates into a γδ T cell or an αβ T cell, each defined by their distinct T cell receptor. Most likely, lessons learned in studying that issue will also provide insight into how the thymus produces T cell subsets with distinct functional and regulatory potentials. Here we review recent experiments, focusing on three factors that regulate thymocyte differentiation up to and including the expression of the first products of antigen receptor gene rearrangements. Those factors are the archetypal developmental regulator Notch, intrinsic signals emanating from antigen-receptor complexes, and trans conditioning, which reflects communication between different subsets of thymocytes. We also review new findings on the positive selection of γδ T cells and on extrathymic T cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of T cell differentiation.
Figure 2: Waves of DN1–3 progenitors give rise to waves of γδ T cells that populate distinct anatomical sites.
Figure 3: The signal-strength and TCR-Notch synergy models.

Similar content being viewed by others

References

  1. Puellmann, K. et al. A variable immunoreceptor in a subpopulation of human neutrophils. Proc. Natl. Acad. Sci. USA 103, 14441–14446 (2006).

    Article  CAS  Google Scholar 

  2. Hayday, A. Orchestrated leak provokes a thymus reassessment. Nat. Immunol. 7, 9–11 (2006).

    Article  CAS  Google Scholar 

  3. Wu, L. et al. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349, 71–74 (1991).

    Article  CAS  Google Scholar 

  4. Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004).

    Article  CAS  Google Scholar 

  5. Laurent, J., Bosco, N., Marche, P.N. & Ceredig, R. New insights into the proliferation and differentiation of early mouse thymocytes. Int. Immunol. 16, 1069–1080 (2004).

    Article  CAS  Google Scholar 

  6. Hoffman, E.S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  Google Scholar 

  7. Taghon, T., Yui, M.A., Pant, R., Diamond, R.A. & Rothenberg, E.V. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    Article  CAS  Google Scholar 

  8. Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. Blood 105, 1930–1936 (2005).

    Article  CAS  Google Scholar 

  9. Krueger, A., Garbe, A.I. & von Boehmer, H. Phenotypic plasticity of T cell progenitors upon exposure to Notch ligands. J. Exp. Med. 203, 1977–1984 (2006).

    Article  CAS  Google Scholar 

  10. Dudley, E.C., Petrie, H.T., Shah, L.M., Owen, M.J. & Hayday, A.C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    Article  CAS  Google Scholar 

  11. Capone, M., Hockett, R.D., Jr & Zlotnik, A. Kinetics of T cell receptor β, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ pro-T thymocytes. Proc. Natl. Acad. Sci. USA 95, 12522–12527 (1998).

    Article  CAS  Google Scholar 

  12. Livak, F., Tourigny, M., Schatz, D.G. & Petrie, H.T. Characterization of TCR gene rearrangements during adult murine T cell development. J. Immunol. 162, 2575–2580 (1999).

    CAS  PubMed  Google Scholar 

  13. Mallick, C.A., Dudley, E.C., Viney, J.L., Owen, M.J. & Hayday, A.C. Rearrangement and diversity of T cell receptor β chain genes in thymocytes: a critical role for the β chain in development. Cell 73, 513–519 (1993).

    Article  CAS  Google Scholar 

  14. Dudley, E.C., Girardi, M., Owen, M.J. & Hayday, A.C. αβ and γδ T cells can share a late common precursor. Curr. Biol. 5, 659–669 (1995).

    Article  CAS  Google Scholar 

  15. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  16. Passoni, L. et al. Intrathymic δ selection events in γδ cell development. Immunity 7, 83–95 (1997).

    Article  CAS  Google Scholar 

  17. Lewis, J.M. et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7, 843–850 (2006).

    Article  CAS  Google Scholar 

  18. Xiong, N., Kang, C. & Raulet, D.H. Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21, 121–131 (2004).

    Article  CAS  Google Scholar 

  19. Hayday, A.C. γδ cells—a right time and a right place for a conserved Third Way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  Google Scholar 

  20. Westermann, J., Ehlers, E.M., Exton, M.S., Kaiser, M. & Bode, U. Migration of naive, effector and memory T cells: implications for the regulation of immune responses. Immunol. Rev. 184, 20–37 (2001).

    Article  CAS  Google Scholar 

  21. Cose, S., Brammer, C., Khanna, K.M., Masopust, D. & Lefrancois, L. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur. J. Immunol. 36, 1423–1433 (2006).

    Article  CAS  Google Scholar 

  22. Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat. Immunol. 7, 76–82 (2006).

    Article  CAS  Google Scholar 

  23. Gangadharan, D. et al. Identification of pre- and post-selection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    Article  CAS  Google Scholar 

  24. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  Google Scholar 

  25. Pennington, D.J. et al. The inter-relatedness and interdependence of mouse T cell receptor γδ+ and αβ+ cells. Nat. Immunol. 4, 991–998 (2003).

    Article  CAS  Google Scholar 

  26. Artavanis-Tsakonas, S., Rand, M. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  27. Harman, B.C. et al. T/B lineage choice occurs prior to intrathymic Notch signaling. Blood 106, 886–892 (2005).

    Article  CAS  Google Scholar 

  28. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  29. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  30. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  31. Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zuniga-Pflucker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    Article  CAS  Google Scholar 

  32. Balciunaite, G., Ceredig, R., Fehling, H.J., Zuniga-Pflucker, J.C. & Rolink, A.G. The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur. J. Immunol. 35, 1292–1300 (2005).

    Article  CAS  Google Scholar 

  33. Mohtashami, M. & Zuniga-Pflucker, J.C. Three-dimensional architecture of the thymus is required to maintain δ-like expression necessary for inducing T cell development. J. Immunol. 176, 730–734 (2006).

    Article  CAS  Google Scholar 

  34. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663–670 (2005).

    Article  CAS  Google Scholar 

  35. Tan, J.B., Visan, I., Yuan, J.S. & Guidos, C.J. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat. Immunol. 6, 671–679 (2005).

    Article  CAS  Google Scholar 

  36. Prinz, I. et al. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat. Immunol. 7, 995–1003 (2006).

    Article  CAS  Google Scholar 

  37. Goetz, C.A. et al. Restricted STAT5 activation dictates appropriate thymic B versus T cell lineage commitment. J. Immunol. 174, 7753–7763 (2005).

    Article  CAS  Google Scholar 

  38. Schlissel, M.S., Durum, S.D. & Muegge, K. The interleukin 7 receptor is required for T cell receptor γ locus accessibility to the V(D)J recombinase. J. Exp. Med. 191, 1045–1050 (2000).

    Article  CAS  Google Scholar 

  39. Boucontet, L., Sepulveda, N., Carneiro, J. & Pereira, P. Mechanisms controlling termination of V-J recombination at the TCR γ locus: implications for allelic and isotypic exclusion of TCR γ chains. J. Immunol. 174, 3912–3919 (2005).

    Article  CAS  Google Scholar 

  40. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJ-β rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  Google Scholar 

  41. Ciofani, M., Knowles, G.C., Wiest, D.L., von Boehmer, H. & Zuniga-Pflucker, J.C. Stage-specific and differential notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25, 105–116 (2006).

    Article  CAS  Google Scholar 

  42. de Smedt, M. et al. Active form of Notch imposes T cell fate in human progenitor cells. J. Immunol. 169, 3021–3029 (2002).

    Article  CAS  Google Scholar 

  43. Garcia-Peydro, M., de Yebene, G. & Toribio, M. Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a γδ T-cell fate in fetal thymus organ culture. Blood 102, 2444–2451 (2003).

    Article  CAS  Google Scholar 

  44. Jiang, R. et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 12, 1046–1057 (1998).

    Article  CAS  Google Scholar 

  45. Ciofani, M. & Zuniga-Pflucker, J.C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 6, 881–888 (2005).

    Article  CAS  Google Scholar 

  46. Edinger, A.L. & Thompson, C.B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 13, 2276–2288 (2002).

    Article  CAS  Google Scholar 

  47. Buer, J., Aifantis, I., DiSanto, J.P., Fehling, H.J. & von Boehmer, H. Role of different T cell receptors in the development of pre-T cells. J. Exp. Med. 185, 1541–1547 (1997).

    Article  CAS  Google Scholar 

  48. Garbe, A.I., Krueger, A., Gounari, F., Zuniga-Pflucker, J.C. & von Boehmer, H. Differential synergy of Notch and T cell receptor signaling determines αβ versus γδ lineage fate. J. Exp. Med. 203, 1579–1590 (2006).

    Article  CAS  Google Scholar 

  49. Bruno, L., Fehling, H.J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  CAS  Google Scholar 

  50. Fritsch, M., Andersson, A., Petersson, K. & Ivars, F. A TCRα transgene induces maturation of CD4CD8 αβ+ T cells from γδ T cell precursors. Eur. J. Immunol. 28, 828–837 (1998).

    Article  CAS  Google Scholar 

  51. Talora, C. et al. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep. 4, 1067–1072 (2003).

    Article  CAS  Google Scholar 

  52. Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    Article  CAS  Google Scholar 

  53. Haks, M.C. et al. Attenuation of γδ TCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    Article  CAS  Google Scholar 

  54. Lauritsen, J.P., Haks, M.C., Lefebvre, J.M., Kappes, D.J. & Wiest, D.L. Recent insights into the signals that control αβ/γδ-lineage fate. Immunol. Rev. 209, 176–190 (2006).

    Article  Google Scholar 

  55. Borowski, C., Li, X., Aifantis, I., Gounari, F. & von Boehmer, H. Pre-TCRα and TCRα are not interchangeable partners of TCRβ during T lymphocyte development. J. Exp. Med. 199, 607–615 (2004).

    Article  CAS  Google Scholar 

  56. Hayes, S.M., Shores, E.W. & Love, P.E. An architectural perspective on signaling by the pre-αβ and γδ T cell receptors. Immunol. Rev. 191, 28–37 (2003).

    Article  CAS  Google Scholar 

  57. Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000).

    Article  CAS  Google Scholar 

  58. Nunez-Cruz, S. et al. LAT regulates γδ T cell homeostasis and differentiation. Nat. Immunol. 4, 999–1008 (2003).

    Article  CAS  Google Scholar 

  59. Petersson, K. & Ivars, F. Early TCR αβ expression promotes maturation of T cells expressing FcεRIγ containing TCR/CD3 complexes. J. Immunol. 166, 6616–6624 (2001).

    Article  CAS  Google Scholar 

  60. Fujikawa, K. et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J. Exp. Med. 198, 1595–1608 (2003).

    Article  CAS  Google Scholar 

  61. Mulroy, T. & Sen, J. p38 MAP kinase activity modulates αβ T cell development. Eur. J. Immunol. 31, 3056–3063 (2001).

    Article  CAS  Google Scholar 

  62. Terrence, K., Pavlovich, C.P., Matechak, E.O. & Fowlkes, B.J. Premature expression of T cell receptor (TCR) αβ suppresses TCR γδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  Google Scholar 

  63. Hayes, S.M. & Love, P.E. Strength of signal: a fundamental mechanism for cell fate specification. Immunol. Rev. 209, 170–175 (2006).

    Article  Google Scholar 

  64. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nat. Immunol. 3, 483–488 (2002).

    Article  CAS  Google Scholar 

  65. Denzel, A. et al. A chemical genetic system for the analysis of kinases regulating T cell development. J. Immunol. 171, 519–523 (2003).

    Article  CAS  Google Scholar 

  66. Pereira, P. & Boucontet, L. Rates of recombination and chain pair biases greatly influence the primary γδ TCR repertoire in the thymus of adult mice. J. Immunol. 173, 3261–3270 (2004).

    Article  CAS  Google Scholar 

  67. Kang, J., Volkmann, A. & Raulet, D.H. Evidence that γδ versus αβ T cell fate determination is initiated independently of T cell receptor signaling. J. Exp. Med. 193, 689–698 (2001).

    Article  CAS  Google Scholar 

  68. Gerber, D., Boucontet, L. & Pereira, P. Early expression of a functional TCR β chain inhibits TCR γ gene rearrangements without altering the frequency of TCR γδ lineage cells. J. Immunol. 173, 2516–2523 (2004).

    Article  CAS  Google Scholar 

  69. Krotkova, A., Smith, E., Nerz, G., Falk, I. & Eichmann, K. Delayed and restricted expression limits putative instructional opportunities of Vγ1.1/Vγ2 γδ TCR in αβ/γδ lineage choice in the thymus. J. Immunol. 173, 25–32 (2004).

    Article  CAS  Google Scholar 

  70. Yui, M.A., Sharp, L.L., Havran, W.L. & Rothenberg, E.V. Preferential activation of an IL-2 regulatory sequence transgene in TCR γδ and NKT cells: subset-specific differences in IL-2 regulation. J. Immunol. 172, 4691–4699 (2004).

    Article  CAS  Google Scholar 

  71. Wei, D.G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    Article  CAS  Google Scholar 

  72. Adams, E.J., Chien, Y.H. & Garcia, K.C. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308, 227–231 (2005).

    Article  CAS  Google Scholar 

  73. Silva-Santos, B., Pennington, D. & Hayday, A.C. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T cell progenitors. Science 307, 925–928 (2005).

    Article  CAS  Google Scholar 

  74. Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  Google Scholar 

  75. Mehr, R., Perelson, A.S., Fridkis-Hareli, M. & Globerson, A. Feedback regulation of T cell development in the thymus. J. Theor. Biol. 181, 157–167 (1996).

    Article  CAS  Google Scholar 

  76. Pennington, D. et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 44, 1073–1077 (2006).

    Article  Google Scholar 

  77. Bonneville, M. et al. Transgenic mice demonstrate that epithelial homing of γ/δ T cells is determined by cell lineages independent of T cell receptor specificity. J. Exp. Med. 171, 1015–1026 (1990).

    Article  CAS  Google Scholar 

  78. Girardi, M., Lewis, J.M., Filler, R.B., Hayday, A.C. & Tigelaar, R.E. Environmentally responsive and reversible regulation of epidermal barrier function by γδ T cells. J. Invest. Dermatol. 126, 808–814 (2006).

    Article  CAS  Google Scholar 

  79. Visan, I. et al. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe–mediated competition for intrathymic niches. Nat. Immunol. 7, 634–643 (2006).

    Article  CAS  Google Scholar 

  80. Terszowski, G. et al. Evidence for a functional second thymus in mice. Science 312, 284–287 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank many colleagues for their ideas and thoughts, in particular T. Silberzahn, B. Silva-Santos and R. Tigelaar. Supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian C Hayday or Daniel J Pennington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayday, A., Pennington, D. Key factors in the organized chaos of early T cell development. Nat Immunol 8, 137–144 (2007). https://doi.org/10.1038/ni1436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing