Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4

Abstract

Cytotoxic T lymphocytes and natural killer cells exert their cytotoxic activity through the polarized secretion of cytotoxic granules at the immunological synapse. Rab27a and hMunc13-4 are critical effectors of the exocytosis of cytotoxic granules. Here we show that the cytotoxic function of lymphocytes requires the cooperation of two types of organelles: the lysosomal cytotoxic granule and the endosomal 'exocytic vesicle'. Independently of Rab27a, hMunc13-4 mediated the assembly of Rab11+ recycling and Rab27+ late endosomal vesicles, constituting a pool of vesicles destined for regulated exocytosis. It also primed cytotoxic granule fusion, possibly through interaction with active Rab27a. Cytotoxic T lymphocyte–target cell recognition induced rapid polarization of both types of organelles, which coalesced near the cell-cell contact area. Our data provide insight into the regulation of the generation and release of cytotoxic granules by effector cytotoxic T lymphocytes and natural killer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytotoxic granules containing perforin and granzyme B do not localize together with hMunc13-4- or Rab27a-associated vesicles.
Figure 2: Rab27a localizes together with Rab7 on late endosomal structures.
Figure 3: The assembly of Rab11+ and Rab27a+ endosomal structures is directed by hMunc13-4.
Figure 4: Limited modulation of hMunc13-4 expression by CTL activation.
Figure 5: The MHD region of hMunc13-4 localizes on vesicular structures that are distinct from cytotoxic granules.
Figure 6: In vivo binding of hMunc13-4 with the active form of Rab27a in cytotoxic cells and characterization of a minimal interacting region of hMunc13-4.
Figure 7: Rab11–hMunc13-4–Rab27a endosomal structures and cytotoxic granules overlap only at the closest zone of cell-cell contact.
Figure 8: 'Exocytic' vesicles and cytotoxic granules assemble at the immunological synapse after hMunc13-4 expression.

Similar content being viewed by others

References

  1. Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002).

    Article  CAS  Google Scholar 

  2. Griffiths, G.M. & Isaaz, S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell Biol. 120, 885–896 (1993).

    Article  CAS  Google Scholar 

  3. Kupfer, A. & Singer, S.J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7, 309–337 (1989).

    Article  CAS  Google Scholar 

  4. Shresta, S., Pham, C.T., Thomas, D.A., Graubert, T.A. & Ley, T.J. How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol. 10, 581–587 (1998).

    Article  CAS  Google Scholar 

  5. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  Google Scholar 

  6. Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 100, 14145–14150 (2003).

    Article  CAS  Google Scholar 

  7. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  Google Scholar 

  8. Menasche, G., Feldmann, J., Fischer, A. & de Saint Basile, G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol. Rev. 203, 165–179 (2005).

    Article  CAS  Google Scholar 

  9. Peters, P.J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    Article  CAS  Google Scholar 

  10. Burkhardt, J.K., Hester, S., Lapham, C.K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 111, 2327–2340 (1990).

    Article  CAS  Google Scholar 

  11. Cuervo, A.M. & Dice, J.F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  Google Scholar 

  12. Blott, E.J. & Griffiths, G.M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3, 122–131 (2002).

    Article  CAS  Google Scholar 

  13. Stinchcombe, J.C., Page, L.J. & Griffiths, G.M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients. Traffic 1, 435–444 (2000).

    Article  CAS  Google Scholar 

  14. Burkhardt, J.K., McIlvain, J.M., Jr ., Sheetz, M.P. & Argon, Y. Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J. Cell Sci. 104, 151–162 (1993).

    CAS  PubMed  Google Scholar 

  15. Kuhn, J.R. et al. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    Article  CAS  Google Scholar 

  16. Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G.M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    Article  CAS  Google Scholar 

  17. Ménasché, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  Google Scholar 

  18. Haddad, E.K., Wu, X., Hammer, J.A. & Henkart, P.A. Defective granule exocytosis in rab27a-deficient lymphocytes from ashen mice. J. Cell Biol. 152, 835–842 (2001).

    Article  CAS  Google Scholar 

  19. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    Article  CAS  Google Scholar 

  20. Seabra, M.C. & Wasmeier, C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16, 451–457 (2004).

    Article  CAS  Google Scholar 

  21. Brose, N., Rosenmund, C. & Rettig, J. Regulation of transmitter release by Unc-13 and its homologues. Curr. Opin. Neurobiol. 10, 303–311 (2000).

    Article  CAS  Google Scholar 

  22. Shirakawa, R. et al. Munc13–4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J. Biol. Chem. 279, 10730–10737 (2004).

    Article  CAS  Google Scholar 

  23. Neeft, M. et al. Munc13–4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 16, 731–741 (2005).

    Article  CAS  Google Scholar 

  24. Feng, Y., Press, B. & Wandinger-Ness, A. Rab 7: an important regulator of late endocytic membrane traffic. J. Cell Biol. 131, 1435–1452 (1995).

    Article  CAS  Google Scholar 

  25. Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R. & Rodriguez-Boulan, E. Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol. 17, 423–434 (2005).

    Article  CAS  Google Scholar 

  26. Yoneda, N. et al. Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia 6, 136–141 (1992).

    CAS  PubMed  Google Scholar 

  27. Olsen, I., Bou-Gharios, G. & Abraham, D. The activation of resting lymphocytes is accompanied by the biogenesis of lysosomal organelles. Eur. J. Immunol. 20, 2161–2170 (1990).

    Article  CAS  Google Scholar 

  28. Guo, W., Sacher, M., Barrowman, J., Ferro-Novick, S. & Novick, P. Protein complexes in transport vesicle targeting. Trends Cell Biol. 10, 251–255 (2000).

    Article  CAS  Google Scholar 

  29. Pfeffer, S. Vesicle tethering factors united. Mol. Cell 8, 729–730 (2001).

    Article  CAS  Google Scholar 

  30. Kuroda, T.S., Fukuda, M., Ariga, H. & Mikoshiba, K. The Slp homology domain of synaptotagmin-like proteins 1–4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem. 277, 9212–9218 (2002).

    Article  CAS  Google Scholar 

  31. Kuroda, T.S., Itoh, T. & Fukuda, M. Functional analysis of slac2-a/melanophilin as a linker protein between Rab27A and myosin Va in melanosome transport. Methods Enzymol. 403, 419–431 (2005).

    Article  CAS  Google Scholar 

  32. Betz, A. et al. Functional interaction of the active zone proteins Munc13–1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  Google Scholar 

  33. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13–1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  Google Scholar 

  34. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  Google Scholar 

  35. Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    Article  CAS  Google Scholar 

  36. Madison, J.M., Nurrish, S. & Kaplan, J.M. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr. Biol. 15, 2236–2242 (2005).

    Article  CAS  Google Scholar 

  37. Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12, 1017–1018 (2005).

    Article  CAS  Google Scholar 

  38. Wilcke, M. et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J. Cell Biol. 151, 1207–1220 (2000).

    Article  CAS  Google Scholar 

  39. van Ijzendoorn, S.C. Recycling endosomes. J. Cell Sci. 119, 1679–1681 (2006).

    Article  CAS  Google Scholar 

  40. Savina, A., Fader, C.M., Damiani, M.T. & Colombo, M.I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  Google Scholar 

  41. Khvotchev, M.V., Ren, M., Takamori, S., Jahn, R. & Sudhof, T.C. Divergent functions of neuronal Rab11b in Ca2+-regulated versus constitutive exocytosis. J. Neurosci. 23, 10531–10539 (2003).

    Article  CAS  Google Scholar 

  42. Sudhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  CAS  Google Scholar 

  43. Kavalali, E.T. Synaptic vesicle reuse and its implications. Neuroscientist 12, 57–66 (2006).

    Article  CAS  Google Scholar 

  44. Poenie, M., Tsien, R.Y. & Schmitt-Verhulst, A.M. Sequential activation and lethal hit measured by [Ca2+]i in individual cytolytic T cells and targets. EMBO J. 6, 2223–2232 (1987).

    Article  CAS  Google Scholar 

  45. Menasche, G. et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest. 112, 450–456 (2003).

    Article  CAS  Google Scholar 

  46. Manders, E.M., Hoebe, R., Strackee, J., Vossepoel, A.M. & Aten, J.A. Largest contour segmentation: a tool for the localization of spots in confocal images. Cytometry 23, 15–21 (1996).

    Article  CAS  Google Scholar 

  47. Raposo, G. et al. Immunogold labeling of ultrathin cryosections: application in immunology. Handbook of Exp. Immunol 4, 1–11 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank B. Goud and J. Salamero (Institut Curie) for discussions and comments on the manuscript and for providing purified anti-Rab11 and pEGFPC1-Rab11; J. Gruenberg (University of Geneva) for providing pEGFC1-Rab7; and R. Micol for help with statistical analysis. Supported by the Institut National de la Santé et de la Recherche Médicale, Agence Nationale de la Recherche, Action Concerté du Ministère de l'Education Nationale et de la Recherche (BCMS103), and Ministère de l'Education Nationale de la Recherche et de la Technologie (M.M.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.M.M. and G.d.S.B. conceptualized and designed the research, analyzed the data and wrote the manuscript; G.d.S.B. supervised the research; M.M.M. did all experiments unless stated otherwise; G.M., J.F. and C.-H.H. contributed to experimental design and analysis; P.K. provided technical assistance; M.G. assisted in immunofluorescence analyses; M.R. and G.R. did the immunoelectron microscopy; and A.F. contributed to discussions and to the preparation of the manuscript.

Corresponding author

Correspondence to Geneviève de Saint Basile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tagged-hMunc13-4 and -Rab27a proteins overexpressed in CTLs are functional. (PDF 500 kb)

Supplementary Fig. 2

Tagged-hMunc13-4 expressed in CTLs colocalize with Rab11+ endosomal structures. (PDF 883 kb)

Supplementary Fig. 3

Mapping of the site of hMunc13-4 interacting with Rab27a. (PDF 398 kb)

Supplementary Fig. 4

Specificity of hMunc13-4 antibody. (PDF 894 kb)

Supplementary Video 1

3-D reconstruction of serial confocal sections taken through the CTL-target cell conjugate shown in Fig 8a (bottom) and rotated around x axis. Cytotoxic granules, labeled with perforin (red) and “exocytic vesicles” associating GFP-Rab11 (green) and unlabeled hMunc13-4 separately polarized toward the cell-cell contact site (blue arrow). Rotation around the x axis show the cytotoxic granules docked at the plasma membrane forming a ring around the small pool of “exocytic vesicles” reaching the cSMAC. (MOV 4464 kb)

Supplementary Video 2

3-D reconstruction of serial confocal sections taken through the CTL-target cell conjugate shown in Fig 8a (bottom) and rotated around y axis. Cytotoxic granules, labeled with perforin (red) and “exocytic vesicles” associating GFP-Rab11 (green) and unlabeled hMunc13-4 separately polarized toward the cell-cell contact site (blue arrow). Rotation around the y axis show the cytotoxic granules docked at the plasma membrane forming a ring around the small pool of “exocytic vesicles” reaching the cSMAC. (MOV 5019 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ménager, M., Ménasché, G., Romao, M. et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat Immunol 8, 257–267 (2007). https://doi.org/10.1038/ni1431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing