Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production

Abstract

Mice lacking activity of the kinase MEKK1 ('Map3k1ΔKD' mice) have defective activation of the kinase Jnk and increased production of T helper type 2 cytokines after T cell receptor ligation. Here we show that Map3k1ΔKD mice had defective germinal center formation and diminished production of antibodies recognizing thymus-dependent antigens. Those defects were B cell intrinsic, as MEKK1 was necessary for CD40-mediated activation of the kinases Jnk and p38 and transcription factor c-Jun, as well as for expression of cyclin D2 and activation-induced deaminase. MEKK1 was recruited to CD40 and adaptor molecule TRAF2 after CD40 ligation, and Map3k1ΔKD B cells were hypoproliferative after CD40 stimulation. Our data emphasize that MEKK1 is an essential component of signaling cascades needed for thymus-dependent antigen-induced B cell proliferation and antibody production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective thymus-dependent immune responses in Map3k1ΔKD mice.
Figure 2: Defects in germinal center formation and antibody production are intrinsic to Map3k1ΔKD B cells.
Figure 3: MAPK and NF-κB signaling in Map3k1+/ΔKD and Map3k1ΔKD B cells.
Figure 4: CD40 engagement induces MEKK1 activation, ubiquitination and recruitment to TRAF2.
Figure 5: MEKK1 is required for CD40-mediated activation of AP-1 and Jun and expression of transcripts encoding cyclin D2.
Figure 6: Additional immune defects of Map3k1ΔKD B cells.

Similar content being viewed by others

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  2. Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  Google Scholar 

  3. Schreck, R. & Rapp, U.R. Raf kinases: Oncogenesis and drug discovery. Int. J. Cancer 119, 2261–2271 (2006).

    Article  CAS  Google Scholar 

  4. Minden, A. et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266, 1719–1723 (1994).

    Article  CAS  Google Scholar 

  5. Zhang, L. et al. A role for MEK kinase 1 in TGF-b/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22, 4443–4454 (2003).

    Article  CAS  Google Scholar 

  6. Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308 (1999).

    Article  CAS  Google Scholar 

  7. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl. Acad. Sci. USA 97, 5243–5248 (2000).

    Article  CAS  Google Scholar 

  8. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  Google Scholar 

  9. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  10. Hartenstein, B. et al. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB. EMBO J. 21, 6321–6329 (2002).

    Article  CAS  Google Scholar 

  11. Rothe, M., Sarma, V., Dixit, V.M. & Goeddel, D.V. TRAF-2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  Google Scholar 

  12. Yuasa, T., Ohno, S., Kehrl, J.H. & Kyriakis, J.M. Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. J. Biol. Chem. 273, 22681–22692 (1998).

    Article  CAS  Google Scholar 

  13. Habelhah, H. et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO J. 23, 322–332 (2004).

    Article  CAS  Google Scholar 

  14. Witowsky, J.A. & Johnson, G.L. Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J. Biol. Chem. 278, 1403–1406 (2003).

    Article  CAS  Google Scholar 

  15. Lu, Z., Xu, S., Joazeiro, C., Cobb, M.H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).

    Article  CAS  Google Scholar 

  16. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136 (2002).

    Article  CAS  Google Scholar 

  17. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  Google Scholar 

  18. Lam, E.W. et al. Cyclin D3 compensates for loss of cyclin D2 in mouse B-lymphocytes activated via the antigen receptor and CD40. J. Biol. Chem. 275, 3479–3484 (2000).

    Article  CAS  Google Scholar 

  19. Bleul, C.C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833 (1996).

    Article  CAS  Google Scholar 

  20. Nagata, S. & Golstein, P. The FAS death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  21. Berberich, I. et al. Cross-linking CD40 of B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases. EMBO J. 15, 92–101 (1996).

    Article  CAS  Google Scholar 

  22. Jabara, H. et al. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 17, 265–276 (2002).

    Article  CAS  Google Scholar 

  23. Ahonen, C. et al. The CD40-TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nat. Immunol. 3, 451–456 (2002).

    Article  CAS  Google Scholar 

  24. Yasui, T. et al. Dissection of B cell differentiation during primary immune responses in mice with altered CD40 signals. Int. Immunol. 14, 319–329 (2002).

    Article  CAS  Google Scholar 

  25. Hostager, B.S., Haxhinasto, S.A., Rowland, S.L. & Bishop, G.A. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J. Biol. Chem. 278, 45382–45390 (2003).

    Article  CAS  Google Scholar 

  26. Morrison, M.D., Reiley, W., Zhang, M. & Sun, S.C. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-κB signaling pathway. J. Biol. Chem. 280, 10018–10024 (2005).

    Article  CAS  Google Scholar 

  27. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  28. Lee, H.H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G. NF-κB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl. Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  Google Scholar 

  29. Li, Z.W., Rickert, R.C. & Karin, M. Genetic dissection of antigen receptor induced-NF-κB activation. Mol. Immunol. 41, 701–714 (2004).

    Article  CAS  Google Scholar 

  30. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  Google Scholar 

  31. Shim, J.H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681 (2005).

    Article  CAS  Google Scholar 

  32. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  33. Gao, M. & Karin, M. Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol. Cell 19, 581–593 (2005).

    Article  CAS  Google Scholar 

  34. Gallagher, E.D., Xu, S., Moomaw, C., Slaughter, C.A. & Cobb, M.H. Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation. J. Biol. Chem. 277, 45785–45792 (2002).

    Article  CAS  Google Scholar 

  35. Anzelon, A.N., Wu, H. & Rickert, R.C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat. Immunol. 4, 287–294 (2003).

    Article  CAS  Google Scholar 

  36. Haas, K.M. et al. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity 17, 713–723 (2002).

    Article  CAS  Google Scholar 

  37. Kracker, S. & Radbruch, A. in B Cell Protocols (eds. Gu, H. & Rajewsky, K.) 149–159 (Humana Press, Totowa, New Jersey, 2004).

    Book  Google Scholar 

  38. Taguchi, T. et al. Detection of individual mouse splenic T cells producing IFN-γ and IL-5 using the enzyme-linked immunospot (ELISPOT) assay. J. Immunol. Methods 128, 65–73 (1990).

    Article  CAS  Google Scholar 

  39. Bonizzi, G. et al. Activation of IKKalpha target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO J. 23, 4202–4210 (2004).

    Article  CAS  Google Scholar 

  40. Hardy, R.H. & Shinton, S.A. in B Cell Protocols (eds. Gu, H. & Rajewsky, K.) 1–24 (Humana Press, Totowa, New Jersey, 2004).

    Book  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (ES04151 and ES06376 to M.K.), the American Cancer Society (M.K.) and the Leukemia and Lymphoma Society of America (T.E.; SCOR grant 7332-06).

Author information

Authors and Affiliations

Authors

Contributions

M.K. designed research and wrote the paper, along with E.G. and T.E.; E.G., T.E. and A.M. did research and analyzed data; A.A. and D.O. helped with flow cytometry and histological analysis; R.H. and M.G. helped with research; and E.J. did the ELISPOT analysis.

Corresponding author

Correspondence to Michael Karin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Histological analysis of CD35+ FDCs in spleens of KLH-immunized mice. (PDF 1854 kb)

Supplementary Fig. 2

CD40-induced proliferation is defective in Map3k1ΔKD B cells. (PDF 536 kb)

Supplementary Fig. 3

CD4+ T cells hyperproliferate in Map3k1ΔKD mice after KLH immunization. (PDF 749 kb)

Supplementary Fig. 4

Jnk2 (Mapk9) but not Jnk1 (Mapk8) is required for B cell proliferation. (PDF 459 kb)

Supplementary Fig. 5

Defective Jnk and p38 MAPK activation in Map3k1ΔKD B cells following stimulation by CD40L or BAFF. (PDF 517 kb)

Supplementary Fig. 6

Immunoprecipitation of endogenous MEKK1. (PDF 605 kb)

Supplementary Fig. 7

Recruitment of MEKK1 to CD40 and TRAF2 following stimulation with CD40L. (PDF 425 kb)

Supplementary Fig. 8

MEKK1 ubiquitination following CD40 engagement. (PDF 586 kb)

Supplementary Fig. 9

Interaction between MEKK1 and TRAFs. (PDF 588 kb)

Supplementary Table 1

Primer sequences used for real-time PCR. (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, E., Enzler, T., Matsuzawa, A. et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol 8, 57–63 (2007). https://doi.org/10.1038/ni1421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing