Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell–mediated immune responses

Abstract

HPK1 is a Ste20-related serine-threonine kinase that inducibly associates with the adaptors SLP-76 and Gads after T cell receptor (TCR) signaling. Here, HPK1 deficiency resulted in enhanced TCR-induced phosphorylation of SLP-76, phospholipase C-γ1 and the kinase Erk, more-persistent calcium flux, and increased production of cytokines and antigen-specific antibodies. Furthermore, HPK1-deficient mice were more susceptible to experimental autoimmune encephalomyelitis. Although the interaction between SLP-76 and Gads was unaffected, the inducible association of SLP-76 with 14-3-3τ (a phosphorylated serine–binding protein and negative regulator of TCR signaling) was reduced in HPK1-deficient T cells after TCR stimulation. HPK1 phosphorylated SLP-76 and induced the interaction of SLP-76 with 14-3-3τ. Our results indicate that HPK1 negatively regulates TCR signaling and T cell–mediated immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphoid development in Map4k1−/− mice.
Figure 2: Map4k1−/− T cells are hyperproliferative in response to TCR stimulation.
Figure 3: Enhanced in vivo T cell activation in Map4k1−/− mice.
Figure 4: Enhanced susceptibility of Map4k1−/− mice to EAE induction.
Figure 5: HPK1 is a negative regulator of TCR-induced Erk activation.
Figure 6: Enhanced proximal TCR signaling in Map4k1−/− T cells.
Figure 7: Regulation of SLP-76 signaling by HPK1.

Similar content being viewed by others

References

  1. Hu, M.C., Qiu, W.R., Wang, X., Meyer, C.F. & Tan, T.-H. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev. 10, 2251–2264 (1996).

    Article  CAS  Google Scholar 

  2. Boomer, J.S. & Tan, T-H. Functional interactions of HPK1 with adaptor proteins. J. Cell. Biochem. 95, 34–44 (2005).

    Article  CAS  Google Scholar 

  3. Kiefer, F. et al. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO J. 15, 7013–7025 (1996).

    Article  CAS  Google Scholar 

  4. Chen, Y-R., Meyer, C.F., Ahmed, B., Yao, Z. & Tan, T-H. Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1). Oncogene 18, 7370–7377 (1999).

    Article  CAS  Google Scholar 

  5. Arnold, R., Liou, J., Drexler, H.C., Weiss, A. & Kiefer, F. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFκB into an inhibitor of NFκB. J. Biol. Chem. 276, 14675–14684 (2001).

    Article  CAS  Google Scholar 

  6. Liou, J. et al. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Immunity 12, 399–408 (2000).

    Article  CAS  Google Scholar 

  7. Ling, P. et al. Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling. J. Biol. Chem. 276, 18908–18914 (2001).

    Article  CAS  Google Scholar 

  8. Liu, S.K., Smith, C.A., Arnold, R., Kiefer, F. & McGlade, C.J. The adaptor protein Gads (Grb2-related adaptor downstream of Shc) is implicated in coupling hemopoietic progenitor kinase-1 to the activated TCR. J. Immunol. 165, 1417–1426 (2000).

    Article  CAS  Google Scholar 

  9. Sauer, K. et al. Hematopoietic progenitor kinase 1 associates physically and functionally with the adaptor proteins B cell linker protein and SLP-76 in lymphocytes. J. Biol. Chem. 276, 45207–45216 (2001).

    Article  CAS  Google Scholar 

  10. Yu, J. et al. Synergistic regulation of immunoreceptor signaling by SLP-76-related adaptor Clnk and serine/threonine protein kinase HPK1. Mol. Cell. Biol. 21, 6102–6112 (2001).

    Article  CAS  Google Scholar 

  11. Han, J. et al. HIP-55 is important for T-cell proliferation, cytokine production, and immune responses. Mol. Cell. Biol. 25, 6869–6878 (2005).

    Article  CAS  Google Scholar 

  12. Ensenat, D. et al. A novel src homology 3 domain-containing adaptor protein, HIP-55, that interacts with hematopoietic progenitor kinase 1. J. Biol. Chem. 274, 33945–33950 (1999).

    Article  CAS  Google Scholar 

  13. Trub, T., Frantz, J.D., Miyazaki, M., Band, H. & Shoelson, S.E. The role of a lymphoid-restricted, Grb2-like SH3–SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–902 (1997).

    Article  CAS  Google Scholar 

  14. Sawasdikosol, S., Russo, K.M. & Burakoff, S.J. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates prostaglandin E2-induced fos gene transcription. Blood 101, 3687–3689 (2003).

    Article  CAS  Google Scholar 

  15. Nagata, Y., Kiefer, F., Watanabe, T. & Todokoro, K. Activation of hematopoietic progenitor kinase-1 by erythropoietin. Blood 93, 3347–3354 (1999).

    CAS  PubMed  Google Scholar 

  16. Hu, M.C. et al. Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IκB kinases (IKK-α/β) and IKK-β is a developmentally regulated protein kinase. Oncogene 18, 5514–5524 (1999).

    Article  CAS  Google Scholar 

  17. Ling, P. et al. Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase. Mol. Cell. Biol. 19, 1359–1368 (1999).

    Article  CAS  Google Scholar 

  18. Ma, W. et al. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T cells. Oncogene 20, 1703–1714 (2001).

    Article  CAS  Google Scholar 

  19. Meller, N. et al. Direct interaction between protein kinase Cθ (PKCθ) and 14–3-3τ in T cells: 14–3-3 overexpression results in inhibition of PKCθ translocation and function. Mol. Cell. Biol. 16, 5782–5791 (1996).

    Article  CAS  Google Scholar 

  20. Bonnefoy-Berard, N. et al. Inhibition of phosphatidylinositol 3-kinase activity by association with 14–3-3 proteins in T cells. Proc. Natl. Acad. Sci. USA 92, 10142–10146 (1995).

    Article  CAS  Google Scholar 

  21. Muslin, A.J., Tanner, J.W., Allen, P.M. & Shaw, A.S. Interaction of 14–3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article  CAS  Google Scholar 

  22. Yaffe, M.B. et al. The structural basis for 14–3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article  CAS  Google Scholar 

  23. Sabapathy, K. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med. 193, 317–328 (2001).

    Article  CAS  Google Scholar 

  24. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  25. Hehner, S.P., Hofmann, T.G., Dienz, O., Droge, W. & Schmitz, M.L. Tyrosine-phosphorylated Vav1 as a point of integration for T-cell receptor- and CD28-mediated activation of JNK, p38, and interleukin-2 transcription. J. Biol. Chem. 275, 18160–18171 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, W., Irvin, B.J., Trible, R.P., Abraham, R.T. & Samelson, L.E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol. 11, 943–950 (1999).

    Article  CAS  Google Scholar 

  27. Yablonski, D., Kuhne, M.R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLCγ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    Article  CAS  Google Scholar 

  28. Ebinu, J.O. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 (2000).

    CAS  PubMed  Google Scholar 

  29. Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

    Article  CAS  Google Scholar 

  30. Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J. Biol. Chem. 279, 18239–18246 (2004).

    Article  CAS  Google Scholar 

  31. Rao, N. et al. The linker phosphorylation site Tyr292 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells. J. Immunol. 164, 4616–4626 (2000).

    Article  CAS  Google Scholar 

  32. Erdreich-Epstein, A. et al. Cbl functions downstream of Src kinases in FcγRI signaling in primary human macrophages. J. Leukoc. Biol. 65, 523–534 (1999).

    Article  CAS  Google Scholar 

  33. Le Bras, S. et al. Recruitment of the actin-binding protein HIP-55 to the immunological synapse regulates T cell receptor signaling and endocytosis. J. Biol. Chem. 279, 15550–15560 (2004).

    Article  CAS  Google Scholar 

  34. Yao, Z. et al. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J. Biol. Chem. 274, 2118–2125 (1999).

    Article  CAS  Google Scholar 

  35. Diener, K. et al. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc. Natl. Acad. Sci. USA 94, 9687–9692 (1997).

    Article  CAS  Google Scholar 

  36. Tung, R.M. & Blenis, J. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene 14, 653–659 (1997).

    Article  CAS  Google Scholar 

  37. Pombo, C.M. et al. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature 377, 750–754 (1995).

    Article  CAS  Google Scholar 

  38. Jeffrey, K.L. et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat. Immunol. 7, 274–283 (2006).

    Article  CAS  Google Scholar 

  39. Jaeschke, A. et al. JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23, 899–911 (2006).

    Article  CAS  Google Scholar 

  40. Brill, L.M. et al. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772 (2004).

    Article  CAS  Google Scholar 

  41. Liu, Y.C., Elly, C., Yoshida, H., Bonnefoy-Berard, N. & Altman, A. Activation-modulated association of 14–3-3 proteins with Cbl in T cells. J. Biol. Chem. 271, 14591–14595 (1996).

    Article  CAS  Google Scholar 

  42. Okuda, Y., Okuda, M. & Bernard, C.C. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 135, 29–37 (2003).

    Article  CAS  Google Scholar 

  43. Zhou, G. et al. Protein phosphatase 4 is involved in tumor necrosis factor-α-induced activation of c-Jun N-terminal kinase. J. Biol. Chem. 277, 6391–6398 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Belmont for assistance with embryonic stem cell culture; F.J. DeMayo (Baylor College of Medicine Transgenic Core Facility) for embryonic stem cell microinjection; K.M. Stehling for technical assistance; and D.A. Guzman and R. Cuthbert for secretarial assistance. Mouse 129/Sv/Ev embryonic stem cells (clone AB2.2) were provided by A. Bradley (The Sanger Institute); GST–14-3-3τ plasmid was provided by W.C. Lin (University of Alabama at Birmingham); and Flag–SLP-76 plasmid was provided by G. Koretzky (University of Pennsylvania). Supported by the National Institutes of Health (R01-AI42532, R01-AI066895 and R01-CA87076 to T.-H.T; and T32-AI07495 to J.-W.S., J.S.B. and G.A.D) and the American Heart Association Texas Affiliate (0465456Y to G.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.-W.S. designed and did experiments and prepared the manuscript; J.S.B. designed and did experiments and edited the manuscript; J.H., J.X. and G.A.D. did experiments; G.Z. assisted in experiments; and T.-H.T. established the initial scientific questions, designed and supervised experiments and composed the manuscript.

Corresponding author

Correspondence to Tse-Hua Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Generation of Mapk41−/− mice. (PDF 173 kb)

Supplementary Figure 2

A schematic model of SLP-76 regulation by HPK1 during T cell signaling. (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shui, JW., Boomer, J., Han, J. et al. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell–mediated immune responses. Nat Immunol 8, 84–91 (2007). https://doi.org/10.1038/ni1416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing