Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes

Abstract

CD28-deficient T cells arrest at the G1–S transition of the cell cycle. Here we show that this is controlled by the kinase aurora B, which exists in a complex with survivin and mammalian target of rapamycin (mTOR). Expression of aurora B in Cd28−/− T cells augmented phosphorylation of mTOR substrates, expression of cyclin A, hyperphosphorylation of retinoblastoma protein and activation of cyclin-dependent kinases 1 and 2 and promoted cell cycle progression. Interleukin 2 enhanced aurora B activity, and inactive aurora B prevented interleukin 2–induced proliferation. Moreover, expression of aurora B restored Cd28−/− T cell proliferation and promoted inflammation in vivo. These data identify aurora B, along with survivin and mTOR, as a regulator of the G1–S checkpoint in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective aurora B expression in primed hyporesponsive Cd28−/− T cells.
Figure 2: Aurora B interacts with survivin.
Figure 3: Aurora B is expressed in the G1 and S phases and regulates G1- and S-phase proteins.
Figure 4: Aurora B and survivin promote G1-S cell cycle progression but not cytokine production in Cd28−/− T cells.
Figure 5: Aurora B kinase activity and cell cycle control depend on mTOR.
Figure 6: Aurora B associates with and regulates the activity of mTOR, p70S6k and 4E-BP1.
Figure 7: IL-2 regulates aurora B, and aurora B is required for IL-2R-induced cell cycle progression.
Figure 8: Aurora B is sufficient to induce proliferation of Cd28−/− T cells in vivo.
Figure 9: Aurora B restores the ability of Cd28−/− TH2 cells to promote lung inflammation.

Similar content being viewed by others

References

  1. Lafferty, K.J. & Cunningham, A.J. A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci. 53, 27–42 (1975).

    Article  CAS  Google Scholar 

  2. Jenkins, M.K. & Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  Google Scholar 

  3. June, C.H., Ledbetter, J.A., Gillespie, M.M., Lindsten, T. & Thompson, C.B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481 (1987).

    Article  CAS  Google Scholar 

  4. Linsley, P.S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  CAS  Google Scholar 

  5. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  Google Scholar 

  6. Sharpe, A.H. & Freeman, G.J. The B7–CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  Google Scholar 

  7. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  8. Beverly, B., Kang, S.M., Lenardo, M.J. & Schwartz, R.H. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int. Immunol. 4, 661–671 (1992).

    Article  CAS  Google Scholar 

  9. Boussiotis, V.A. et al. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    Article  CAS  Google Scholar 

  10. Powell, J.D., Lerner, C.G. & Schwartz, R.H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  11. Prasad, K.V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl. Acad. Sci. USA 91, 2834–2838 (1994).

    Article  CAS  Google Scholar 

  12. Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 3627–3632 (1997).

    Article  CAS  Google Scholar 

  13. Nourse, J. et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372, 570–573 (1994).

    Article  CAS  Google Scholar 

  14. Boussiotis, V.A. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat. Med. 6, 290–297 (2000).

    Article  CAS  Google Scholar 

  15. Powell, J.D., Bruniquel, D. & Schwartz, R.H. TCR engagement in the absence of cell cycle progression leads to T cell anergy independent of p27Kip1. Eur. J. Immunol. 31, 3737–3746 (2001).

    Article  CAS  Google Scholar 

  16. Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol. 2, 37–44 (2001).

    Article  CAS  Google Scholar 

  17. Song, J., So, T., Cheng, M., Tang, X. & Croft, M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 22, 621–631 (2005).

    Article  CAS  Google Scholar 

  18. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    Article  CAS  Google Scholar 

  19. Tamm, I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320 (1998).

    CAS  PubMed  Google Scholar 

  20. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol. 1, 461–466 (1999).

    Article  CAS  Google Scholar 

  21. Wheatley, S.P., Carvalho, A., Vagnarelli, P. & Earnshaw, W.C. INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890 (2001).

    Article  CAS  Google Scholar 

  22. Bolton, M.A. et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol. Biol. Cell 13, 3064–3077 (2002).

    Article  CAS  Google Scholar 

  23. Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J. 17, 667–676 (1998).

    Article  CAS  Google Scholar 

  24. Murata-Hori, M. & Wang, Y.L. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr. Biol. 12, 894–899 (2002).

    Article  CAS  Google Scholar 

  25. Kallio, M.J., McCleland, M.L., Stukenberg, P.T. & Gorbsky, G.J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol. 12, 900–905 (2002).

    Article  CAS  Google Scholar 

  26. Hunter, T. & Pines, J. Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell 79, 573–582 (1994).

    Article  CAS  Google Scholar 

  27. Ekholm, S.V. & Reed, S.I. Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Curr. Opin. Cell Biol. 12, 676–684 (2000).

    Article  CAS  Google Scholar 

  28. Yam, C.H., Fung, T.K. & Poon, R.Y. Cyclin A in cell cycle control and cancer. Cell. Mol. Life Sci. 59, 1317–1326 (2002).

    Article  CAS  Google Scholar 

  29. Morice, W.G., Wiederrecht, G., Brunn, G.J., Siekierka, J.J. & Abraham, R.T. Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J. Biol. Chem. 268, 22737–22745 (1993).

    CAS  PubMed  Google Scholar 

  30. Murata-Hori, M., Tatsuka, M. & Wang, Y.L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    Article  CAS  Google Scholar 

  31. O'Connor, D.S. et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. USA 97, 13103–13107 (2000).

    Article  CAS  Google Scholar 

  32. Wall, N.R., O'Connor, D.S., Plescia, J., Pommier, Y. & Altieri, D.C. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res. 63, 230–235 (2003).

    CAS  PubMed  Google Scholar 

  33. Wheatley, S.P., Henzing, A.J., Dodson, H., Khaled, W. & Earnshaw, W.C. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem. 279, 5655–5660 (2004).

    Article  CAS  Google Scholar 

  34. Chen, J. et al. Survivin enhances Aurora-B kinase activity and localizes Aurora-B in human cells. J. Biol. Chem. 278, 486–490 (2003).

    Article  CAS  Google Scholar 

  35. Morice, W.G., Brunn, G.J., Wiederrecht, G., Siekierka, J.J. & Abraham, R.T. Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J. Biol. Chem. 268, 3734–3738 (1993).

    CAS  PubMed  Google Scholar 

  36. Inoki, K., Ouyang, H., Li, Y. & Guan, K.L. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79–100 (2005).

    Article  CAS  Google Scholar 

  37. Martin, D.E. & Hall, M.N. The expanding TOR signaling network. Curr. Opin. Cell Biol. 17, 158–166 (2005).

    Article  CAS  Google Scholar 

  38. Salek-Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 315–324 (2003).

    Article  CAS  Google Scholar 

  39. Carmena, M. & Earnshaw, W.C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol. 4, 842–854 (2003).

    Article  CAS  Google Scholar 

  40. Ke, Y.W., Dou, Z., Zhang, J. & Yao, X.B. Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res. 13, 69–81 (2003).

    Article  CAS  Google Scholar 

  41. Xing, Z., Conway, E.M., Kang, C. & Winoto, A. Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. J. Exp. Med. 199, 69–80 (2004).

    Article  CAS  Google Scholar 

  42. Okada, H. et al. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J. Exp. Med. 199, 399–410 (2004).

    Article  CAS  Google Scholar 

  43. Suzuki, A. et al. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16INK4a and Cdk2/cyclin E complex activation. Oncogene 19, 3225–3234 (2000).

    Article  CAS  Google Scholar 

  44. Fukuda, S. & Pelus, L.M. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood 98, 2091–2100 (2001).

    Article  CAS  Google Scholar 

  45. Shen, W.H. et al. Tumor necrosis factor alpha inhibits cyclin A expression and retinoblastoma hyperphosphorylation triggered by insulin-like growth factor-I induction of new E2F–1 synthesis. J. Biol. Chem. 279, 7438–7446 (2004).

    Article  CAS  Google Scholar 

  46. Suzuki, A. et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene 19, 1346–1353 (2000).

    Article  CAS  Google Scholar 

  47. Jacinto, E. & Hall, M.N. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126 (2003).

    Article  CAS  Google Scholar 

  48. Chiang, G.G. & Abraham, R.T. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280, 25485–25490 (2005).

    Article  CAS  Google Scholar 

  49. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Tatsuka (Research Institute for Radiation Biology and Medicine, Hiroshima University) for aurora B cDNA, and A. Song, W. Duan, X. Tang and Y. Adams for technical assistance. The cDNA to construct Mig vectors expressing survivin and dominant negative survivin was provided by D. Altieri (University of Massachusetts Medical School). Supported by the US National Institutes of Health (AI50498 and AI49453 to M.C.) and the Universitywide AIDS Research Program (J.S.). This is manuscript 764 from the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Contributions

J.S., S.S.-A., T.S. and M.C. designed the research and analyzed the data; J.S., S.S.-A. and T.S. did the research; and M.C. wrote the manuscript.

Corresponding author

Correspondence to Michael Croft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Aurora B is expressed and active in T cells. (PDF 55 kb)

Supplementary Fig. 2

Aurora B expression and activity in naive T cells. (PDF 71 kb)

Supplementary Fig. 3

MEK/Erk regulate aurora B activity and G1-S transition. (PDF 264 kb)

Supplementary Fig. 4

Aurora B activity induced by IL-2R is dependent on mTor. (PDF 70 kb)

Supplementary Methods (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Salek-Ardakani, S., So, T. et al. The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes. Nat Immunol 8, 64–73 (2007). https://doi.org/10.1038/ni1413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing