Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lipid rafts: now you see them, now you don't

Abstract

The 'lipid raft' hypothesis has been a contentious topic over the past 5 years, with much of the immunology community divided into 'believers' and 'nonbelievers'. The disagreement is due mainly to the inability to observe these membrane domains directly and to the widespread use of experimental approaches of dubious utility. As a lipid raft 'dilettante' who has dabbled in the area over the years, I view the lipid raft model with some skepticism and disinterest because of that confusion. Although progress in the field has helped clarify some of the issues, more work is still needed to formally confirm the lipid raft hypothesis and to reestablish the scientific credibility of this area.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How big is a lipid raft relative to the molecules it comprises? These are the dimensions of typical lipid raft constituents, including a phospholipid, a Src kinase, a typical transmembrane domain and an immunoglobulin (Ig) domain (as they are the most common type of ectodomain).

Similar content being viewed by others

References

  1. Yu, J., Fischman, D.A. & Steck, T.L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1, 233–248 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Ze'ev, A., Duerr, A., Solomon, F. & Penman, S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell 17, 859–865 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Hooper, N.M. & Turner, A.J. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 250, 865–869 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. van Meer, G. & Simons, K. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J. 1, 847–852 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown, D.A. & Rose, J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, D.A., Crise, B. & Rose, J.K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R.E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Radhakrishnan, A. & McConnell, H.M. Condensed complexes of cholesterol and phospholipids. Biophys. J. 77, 1507–1517 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Brown, D.A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Shenoy-Scaria, A.M., Dietzen, D.J., Kwong, J., Link, D.C. & Lublin, D.M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Stefanova, I., Horejsi, V., Ansotegui, I.J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Geppert, T.D. & Lipsky, P.E. Association of various T cell-surface molecules with the cytoskeleton. Effect of cross-linking and activation. J. Immunol. 146, 3298–3305 (1991).

    CAS  PubMed  Google Scholar 

  15. Rozdzial, M.M., Malissen, B. & Finkel, T.H. Tyrosine-phosphorylated T cell receptor zeta chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 3, 623–633 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Pierce, S.K. To cluster or not to cluster: FRETting over rafts. Nat. Cell Biol. 6, 180–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Giocondi, M.C., Vie, V., Lesniewska, E., Goudonnet, J.P. & Le Grimellec, C. In situ imaging of detergent-resistant membranes by atomic force microscopy. J. Struct. Biol. 131, 38–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32, 3082–3091 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hao, M., Mukherjee, S. & Maxfield, F.R. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl. Acad. Sci. USA 98, 13072–13077 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ahmed, S.N., Brown, D.A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Maxfield, F.R. & Mayor, S. Cell surface dynamics of GPI-anchored proteins. Adv. Exp. Med. Biol. 419, 355–364 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Kenworthy, A.K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell. Biol. 7, 456–462 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Prior, I.A., Muncke, C., Parton, R.G. & Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kawasaki, K., Yin, J.J., Subczynski, W.K., Hyde, J.S. & Kusumi, A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys. J. 80, 738–748 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kenworthy, A.K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Housden, H.R. et al. Investigation of the kinetics and order of tyrosine phosphorylation in the T-cell receptor ζ chain by the protein tyrosine kinase Lck. Eur. J. Biochem. FEBS 270, 2369–2376 (2003).

    Article  CAS  Google Scholar 

  33. Amarasinghe, G.K. & Rosen, M.K. Acidic region tyrosines provide access points for allosteric activation of the autoinhibited Vav1 Dbl homology domain. Biochemistry 44, 15257–15268 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bu, J.Y., Shaw, A.S. & Chan, A.C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc. Natl. Acad. Sci. USA 92, 5106–5110 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Almeida, P.F., Pokorny, A. & Hinderliter, A. Thermodynamics of membrane domains. Biochim. Biophys. Acta 1720, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Larson, D.R., Gosse, J.A., Holowka, D.A., Baird, B.A. & Webb, W.W. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171, 527–536 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Burack, W.R., Lee, K.H., Holdorf, A.D., Dustin, M.L. & Shaw, A.S. Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Pike, L.J. Rafts defined. J. Lipid Res. 47, 1597–1598 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, A. Lipid rafts: now you see them, now you don't. Nat Immunol 7, 1139–1142 (2006). https://doi.org/10.1038/ni1405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing