Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs

Abstract

The migration of B cells into secondary lymphoid organs is required for the generation of an effective immune response. Here we analyzed the involvement of SWAP-70, a Rac-interacting protein involved in actin rearrangement, in B cell entry into lymph nodes. We noted reduced migration of Swap70−/− B cells into lymph nodes in vivo. Swap70−/− B cells rolled and adhered, yet accumulated in lymph node high endothelial venules. This defect was not due to impaired integrin expression or chemotaxis. Instead, Swap70−/− B cells aberrantly regulated integrin-mediated adhesion. During attachment, Swap70−/− B cells showed defective polarization and did not form uropods or stabilize lamellipodia at a defined region. Thus, SWAP-70 selectively regulates processes essential for B cell entry into lymph nodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammation-induced accumulation of Swap70−/− B cells in lymph nodes.
Figure 2: Migration of Swap70−/− B cells to lymph nodes.
Figure 3: Integrin-mediated adhesion of Swap70−/− B cells.
Figure 4: Polarization of Swap70−/− B cells.
Figure 5: Adhesion of Swap70−/− B cells.
Figure 6: Lamellipodia formation.
Figure 7: B cell accumulation in HEVs.

Similar content being viewed by others

References

  1. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  2. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  Google Scholar 

  3. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  4. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  Google Scholar 

  5. Warnock, R.A., Askari, S., Butcher, E.C. & von Andrian, U.H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  Google Scholar 

  6. Ngo, V.N., Cornall, R.J. & Cyster, J.G. Splenic T zone development is B cell dependent. J. Exp. Med. 194, 1649–1660 (2001).

    Article  CAS  Google Scholar 

  7. Nolte, M.A. et al. B cells are crucial for both development and maintenance of the splenic marginal zone. J. Immunol. 172, 3620–3627 (2004).

    Article  CAS  Google Scholar 

  8. Angeli, V. et al. B cell driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  Google Scholar 

  9. Wittchen, E.S., van Buul, J.D., Burridge, K. & Worthylake, R.A. Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Curr. Opin. Hematol. 12, 14–21 (2005).

    Article  CAS  Google Scholar 

  10. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  11. Fenteany, G. & Glogauer, M. Cytoskeletal remodeling in leukocyte function. Curr. Opin. Hematol. 11, 15–24 (2004).

    Article  Google Scholar 

  12. Sun, C.X. et al. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104, 3758–3765 (2004).

    Article  CAS  Google Scholar 

  13. Weiss-Haljiti, C. et al. Involvement of phosphoinositide 3-kinase-γ, Rac, and PAK signaling in chemokine-induced macrophage migration. J. Biol. Chem. 279, 43273–43284 (2004).

    Article  CAS  Google Scholar 

  14. Filippi, M.D. et al. Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat. Immunol. 5, 744–751 (2004).

    Article  CAS  Google Scholar 

  15. Gakidis, M.A. et al. Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J. Cell Biol. 166, 273–282 (2004).

    Article  CAS  Google Scholar 

  16. Gismondi, A. et al. Proline-rich tyrosine kinase 2 and Rac activation by chemokine and integrin receptors controls NK cell transendothelial migration. J. Immunol. 170, 3065–3073 (2003).

    Article  CAS  Google Scholar 

  17. Curnock, A.P., Logan, M.K. & Ward, S.G. Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 105, 125–136 (2002).

    Article  CAS  Google Scholar 

  18. Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21, 429–441 (2004).

    Article  CAS  Google Scholar 

  19. Borggrefe, T. et al. Cellular, intracellular, and developmental expression patterns of murine SWAP-70. Eur. J. Immunol. 29, 1812–1822 (1999).

    Article  CAS  Google Scholar 

  20. Shinohara, M. et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416, 759–763 (2002).

    Article  CAS  Google Scholar 

  21. Tanaka, Y. et al. SWAP-70-like adapter of T cells, an adapter protein that regulates early TCR-initiated signaling in Th2 lineage cells. Immunity 18, 403–414 (2003).

    Article  CAS  Google Scholar 

  22. Gupta, S. et al. Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system. Hum. Immunol. 64, 389–401 (2003).

    Article  CAS  Google Scholar 

  23. Hilpela, P. et al. SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol. Biol. Cell 14, 3242–3253 (2003).

    Article  Google Scholar 

  24. Ihara, S., Oka, T. & Fukui, Y. Direct binding of SWAP-70 to non-muscle actin is required for membrane ruffling. J. Cell Sci. 119, 500–507 (2006).

    Article  CAS  Google Scholar 

  25. Sivalenka, R.R. & Jessberger, R. SWAP-70 regulates c-kit-induced mast cell activation, cell-cell adhesion, and migration. Mol. Cell. Biol. 24, 10277–10288 (2004).

    Article  CAS  Google Scholar 

  26. Hogg, N., Laschinger, M., Giles, K. & McDowall, A. T-cell integrins: more than just sticking points. J. Cell Sci. 116, 4695–4705 (2003).

    Article  CAS  Google Scholar 

  27. Dustin, M.L., Bivona, T.G. & Philips, M.R. Membranes as messengers in T cell adhesion signaling. Nat. Immunol. 5, 363–372 (2004).

    Article  CAS  Google Scholar 

  28. Prasad, K.S. et al. Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc. Natl. Acad. Sci. USA 100, 12367–12371 (2003).

    Article  CAS  Google Scholar 

  29. Davey, E.J. et al. Homotypic aggregation of murine B lymphocytes is independent of CD23. Eur. J. Immunol. 25, 1224–1229 (1995).

    Article  CAS  Google Scholar 

  30. Greicius, G., Tamosiunas, V. & Severinson, E. Assessment of the role of leucocyte function-associated antigen-1 in homotypic adhesion of activated B lymphocytes. Scand. J. Immunol. 48, 642–650 (1998).

    Article  CAS  Google Scholar 

  31. Borggrefe, T., Keshavarzi, S., Gross, B., Wabl, M. & Jessberger, R. Impaired IgE response in SWAP-70-deficient mice. Eur. J. Immunol. 31, 2467–2475 (2001).

    Article  CAS  Google Scholar 

  32. Smith, A., Bracke, M., Leitinger, B., Porter, J.C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    Article  CAS  Google Scholar 

  33. Davey, E.J., Thyberg, J., Conrad, D.H. & Severinson, E. Regulation of cell morphology in B lymphocytes by IL-4: evidence for induced cytoskeletal changes. J. Immunol. 160, 5366–5373 (1998).

    CAS  PubMed  Google Scholar 

  34. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  Google Scholar 

  35. Campbell, J.J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  Google Scholar 

  36. McLachlan, J.B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 4, 1199–1205 (2003).

    Article  CAS  Google Scholar 

  37. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).

    Article  CAS  Google Scholar 

  38. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  Google Scholar 

  39. Worthylake, R.A. & Burridge, K. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584 (2003).

    Article  CAS  Google Scholar 

  40. Schenkel, A.R., Mamdouh, Z. & Muller, W.A. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat. Immunol. 5, 393–400 (2004).

    Article  CAS  Google Scholar 

  41. Dustin, M.L., Carpen, O. & Springer, T.A. Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J. Immunol. 148, 2654–2663 (1992).

    CAS  PubMed  Google Scholar 

  42. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  43. Millan, J. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8, 113–123 (2006).

    Article  CAS  Google Scholar 

  44. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  Google Scholar 

  45. von Andrian, U.H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996).

    Article  CAS  Google Scholar 

  46. von Andrian, U.H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun. 6, 85–96 (1998).

    Article  CAS  Google Scholar 

  47. Masat, L. et al. Association of SWAP-70 with the B cell antigen receptor complex. Proc. Natl. Acad. Sci. USA 97, 2180–2184 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Quemeneur for discussions, and A. Berg and M. Chopin for help. Supported by the National Institutes of Health (AI49470 to R.J.) and the Deutsche Forschungsgemeinschaft (SFB605 to R.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jessberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Inflammation-induced migration of B cells into the peritoneum. (PDF 207 kb)

Supplementary Fig. 2

Flow cytometric analysis of integrin and chemokine receptor expression on purified B cells. (PDF 692 kb)

Supplementary Fig. 3

Actin polymerization and Rac-1 activity and localization. (PDF 531 kb)

Supplementary Video 1

WT B cells moving on an anti-CD44 coated surface. Images were collected every 10 sec for 20 min after a 25 min attachment period. (MOV 3624 kb)

Supplementary Video 2

Swap70−/− B cells moving on an anti-CD44 coated surface. Images were collected every 10 sec for 20 min after a 25 min attachment period. (MOV 3100 kb)

Supplementary Methods (PDF 73 kb)

Supplementary Note (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, G., Angeli, V., Randolph, G. et al. Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nat Immunol 7, 827–834 (2006). https://doi.org/10.1038/ni1365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing