Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing

Abstract

By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor Gfi1. U2AF26 promoted formation of the less-active CD45RO by facilitating exon exclusion. Gfi1 antagonized that process by directly interacting with U2AF26, identifying a previously unknown link between a transcription factor and alternative splicing. The presence of Gfi1 led to formation of the more-active CD45RB, whereas loss of Gfi1 favored CD45RO production. We propose that the relative abundance of U2AF26 and Gfi1 determines the ratio of CD45 isoforms, thereby regulating T cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gfi1 interacts with U2AF26.
Figure 2: U2AF26 promotes the exclusion of Ptprc exon B, as assessed by a minigene approach.
Figure 3: Mice transgenic for Flag-tagged U2AF26 have altered CD45 mRNA expression.
Figure 4: Mice transgenic for the Flag-tagged U2AF26 have defects in CD45RB expression and are unable to respond properly to TCR stimulation.
Figure 5: Gfi1 reverses the U2AF26-mediated reduction in CD45RB expression.
Figure 6: Altered CD45RB/CD45RO ratio and altered response to TCR stimulation in Gfi1-deficient T cells.
Figure 7: U2AF26 and Gfi1 are induced with different kinetics after T cell activation.

Similar content being viewed by others

References

  1. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  2. Graveley, B.R. Sex, AGility, and the regulation of alternative splicing. Cell 109, 409–412 (2002).

    Article  CAS  Google Scholar 

  3. Lynch, K.W. Consequences of regulated pre-mRNA splicing in the immune system. Nat. Rev. Immunol. 4, 931–940 (2004).

    Article  CAS  Google Scholar 

  4. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  Google Scholar 

  5. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  6. Shepard, J., Reick, M., Olson, S. & Graveley, B.R. Characterization of U2AF(6), a splicing factor related to U2AF(35). Mol. Cell. Biol. 22, 221–230 (2002).

    Article  CAS  Google Scholar 

  7. Graveley, B.R., Hertel, K.J. & Maniatis, T. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA 7, 806–818 (2001).

    Article  CAS  Google Scholar 

  8. Wu, S., Romfo, C.M., Nilsen, T.W. & Green, M.R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999).

    Article  CAS  Google Scholar 

  9. Hermiston, M.L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    Article  CAS  Google Scholar 

  10. ten Dam, G.B. et al. Regulation of alternative splicing of CD45 by antagonistic effects of SR protein splicing factors. J. Immunol. 164, 5287–5295 (2000).

    Article  CAS  Google Scholar 

  11. Byth, K.F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 183, 1707–1718 (1996).

    Article  CAS  Google Scholar 

  12. Mee, P.J. et al. Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. Eur. J. Immunol. 29, 2923–2933 (1999).

    Article  CAS  Google Scholar 

  13. Penninger, J.M., Irie-Sasaki, J., Sasaki, T. & Oliveira dos Santos, A.J. CD45: new jobs for an old acquaintance. Nat. Immunol. 2, 389–396 (2001).

    Article  CAS  Google Scholar 

  14. Mustelin, T. & Tasken, K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 371, 15–27 (2003).

    Article  CAS  Google Scholar 

  15. Birkeland, M.L., Johnson, P., Trowbridge, I.S. & Pure, E. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc. Natl. Acad. Sci. USA 86, 6734–6738 (1989).

    Article  CAS  Google Scholar 

  16. Lynch, K.W. & Weiss, A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras. Mol. Cell. Biol. 20, 70–80 (2000).

    Article  CAS  Google Scholar 

  17. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol. 3, 764–771 (2002).

    Article  CAS  Google Scholar 

  18. Karsunky, H., Mende, I., Schmidt, T. & Moroy, T. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene 21, 1571–1579 (2002).

    Article  CAS  Google Scholar 

  19. Yucel, R., Kosan, C., Heyd, F. & Moroy, T. Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J. Biol. Chem. 279, 40906–40917 (2004).

    Article  Google Scholar 

  20. Moroy, T. The zinc finger transcription factor growth factor independence 1 (Gfi1). Int. J. Biochem. Cell Biol. 37, 541–546 (2005).

    Article  Google Scholar 

  21. Yucel, R., Karsunky, H., Klein-Hitpass, L. & Moroy, T. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J. Exp. Med. 197, 831–844 (2003).

    Article  CAS  Google Scholar 

  22. ten Dam, G.B., Wieringa, B. & Poels, L.G. Alternative splicing of CD45 pre-mRNA is uniquely obedient to conditions in lymphoid cells. Biochim. Biophys. Acta 1446, 317–333 (1999).

    Article  CAS  Google Scholar 

  23. Tsujikawa, K., Uchino, Y., Ichijo, T., Furukawa, T. & Yamamoto, H. Detection of CD45ι mRNA in murine Th1 but not Th2 clones. Immunobiology 201, 506–514 (2000).

    Article  CAS  Google Scholar 

  24. Karsunky, H. et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat. Genet. 30, 295–300 (2002).

    Article  Google Scholar 

  25. Kung, C. et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. 6, 343–345 (2000).

    Article  CAS  Google Scholar 

  26. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat. Genet. 26, 495–499 (2000).

    Article  CAS  Google Scholar 

  27. Guth, S., Tange, T.O., Kellenberger, E. & Valcarcel, J. Dual function for U2AF(35) in AG-dependent pre-mRNA splicing. Mol. Cell. Biol. 21, 7673–7681 (2001).

    Article  CAS  Google Scholar 

  28. Rothrock, C.R., House, A.E. & Lynch, K.W. HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J. 24, 2792–2802 (2005).

    Article  CAS  Google Scholar 

  29. Tong, A., Nguyen, J. & Lynch, K.W. Differential expression of CD45 isoforms is controlled by the combined activity of basal and inducible splicing-regulatory elements in each of the variable exons. J. Biol. Chem. 280, 38297–38304 (2005).

    Article  CAS  Google Scholar 

  30. Deans, J.P. et al. Transient accumulation and subsequent rapid loss of messenger RNA encoding high molecular mass CD45 isoforms after T cell activation. J. Immunol. 148, 1898–1905 (1992).

    CAS  PubMed  Google Scholar 

  31. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    Article  CAS  Google Scholar 

  32. Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–197 (2003).

    Article  CAS  Google Scholar 

  33. Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10, 701–711 (1999).

    Article  CAS  Google Scholar 

  34. Dornan, S. et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J. Biol. Chem. 277, 1912–1918 (2002).

    Article  CAS  Google Scholar 

  35. Kozieradzki, I. et al. T cell development in mice expressing splice variants of the protein tyrosine phosphatase CD45. J. Immunol. 158, 3130–3139 (1997).

    CAS  PubMed  Google Scholar 

  36. Ogilvy, S. et al. Either of the CD45RB and CD45RO isoforms are effective in restoring T cell, but not B cell, development and function in CD45-null mice. J. Immunol. 171, 1792–1800 (2003).

    Article  CAS  Google Scholar 

  37. Chui, D., Ong, C.J., Johnson, P., Teh, H.S. & Marth, J.D. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J. 13, 798–807 (1994).

    Article  CAS  Google Scholar 

  38. McNeill, L. et al. CD45 isoforms in T cell signalling and development. Immunol. Lett. 92, 125–134 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Spratte, A. Warda and W. Wegrzyn for technical assistance; P. Plessow and T. Civela for animal care; and A. Weiss (University of California, San Francisco, California) and R. Lührmann (Max Planck Institute for Biophysical Chemistry, Gottingen, Germany) for critically reading the manuscript and for suggestions. Supported by the Deutsche Forschungsgemeinschaft (Mo 435/10-4, 10-5), Fonds der Chemischen Industrie, the IFORES Program of the University of Essen Medical School, and Studienstiftung des deutschen Volkes (F.H.).

Author information

Authors and Affiliations

Authors

Contributions

G.t.D. provided essential reagents and helped to write the paper; F.H. did the experimental work; F.H. and T.M. designed the experiments, analyzed the data and wrote the paper; and T.M. supervised the work.

Corresponding author

Correspondence to Tarik Möröy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mapping of interaction domains in Gfi1 and U2AF26. (PDF 260 kb)

Supplementary Fig. 2

Real-time PCR for the detection of different CD45 isoforms. (PDF 256 kb)

Supplementary Fig. 3

U2AF26-Flag transgene expression is downregulated after T cell stimulation. (PDF 145 kb)

Supplementary Fig. 4

Phenotype of U2AF26 transgenic T cells was indistinguishable from WT T cells. (PDF 458 kb)

Supplementary Methods (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyd, F., ten Dam, G. & Möröy, T. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing. Nat Immunol 7, 859–867 (2006). https://doi.org/10.1038/ni1361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing