Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foxp1 is an essential transcriptional regulator of B cell development

Abstract

Forkhead transcription factors are key participants in development and immune regulation. Here we demonstrate that absence of the gene encoding the forkhead transcription factor Foxp1 resulted in a profound defect in early B cell development. Foxp1 deficiency was associated with decreased expression of all B lineage genes in B220+ fetal liver cells as well as with a block in the transition from pro–B cell to pre–B cell involving diminished expression of recombination-activating genes 1 and 2. Foxp1 bound to the Erag enhancer and was involved in controlling variable-(diversity)-joining recombination of the gene encoding immunoglobulin heavy chain in a B cell lineage–specific way. Our results identify Foxp1 as an essential participant in the transcriptional regulatory network of B lymphopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation of Foxp1−/− mice.
Figure 2: B cell development is impaired in the absence of Foxp1.
Figure 3: Impaired μ-chain generation in Foxp1−/− pro–B cells ex vivo.
Figure 4: Expression of B cell lineage genes in B220+ Foxp1−/− fetal liver cells and pro–B cells cultured in vitro.
Figure 5: Foxp1 binds directly to consensus forkhead sites in the Erag enhancer, as shown by chromatin immunoprecipitation and EMSA.
Figure 6: V(D)J rearrangement of Igh genes is impaired in Foxp1−/− pro–B cells cultured in vitro.

Similar content being viewed by others

References

  1. Carlsson, P. & Mahlapuu, M. Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250, 1–23 (2002).

    Article  CAS  Google Scholar 

  2. Lehmann, O.J., Sowden, J.C., Carlsson, P., Jordan, T. & Bhattacharya, S.S. Fox's in development and disease. Trends Genet. 19, 339–344 (2003).

    Article  CAS  Google Scholar 

  3. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. & Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–107 (1994).

    Article  CAS  Google Scholar 

  4. Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L. & Peng, S.L. Modulation of Th1 activation and inflammation by the NF-κB repressor Foxj1. Science 303, 1017–1020 (2004).

    Article  CAS  Google Scholar 

  5. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  Google Scholar 

  6. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  Google Scholar 

  7. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  Google Scholar 

  8. Li, C. & Tucker, P.W. DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain. Proc. Natl. Acad. Sci. USA 90, 11583–11587 (1993).

    Article  CAS  Google Scholar 

  9. Shu, W., Yang, H., Zhang, L., Lu, M.M. & Morrisey, E.E. Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. J. Biol. Chem. 276, 27488–27497 (2001).

    Article  CAS  Google Scholar 

  10. Wang, B., Lin, D., Li, C. & Tucker, P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. 278, 24259–24268 (2003).

    Article  CAS  Google Scholar 

  11. Banham, A.H. et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 61, 8820–8829 (2001).

    CAS  PubMed  Google Scholar 

  12. Banham, A.H. et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin. Cancer Res. 11, 1065–1072 (2005).

    CAS  PubMed  Google Scholar 

  13. Streubel, B., Vinatzer, U., Lamprecht, A., Raderer, M. & Chott, A.T. (3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19, 652–658 (2005).

    Article  CAS  Google Scholar 

  14. Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4, 525–532 (2003).

    Article  CAS  Google Scholar 

  15. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  Google Scholar 

  16. Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  Google Scholar 

  17. Scott, E.W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6, 437–447 (1997).

    Article  CAS  Google Scholar 

  18. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  19. Hagman, J., Travis, A. & Grosschedl, R. A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO J. 10, 3409–3417 (1991).

    Article  CAS  Google Scholar 

  20. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  21. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  Google Scholar 

  22. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  23. Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    Article  CAS  Google Scholar 

  24. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    Article  CAS  Google Scholar 

  25. Karasuyama, H., Kudo, A. & Melchers, F. The proteins encoded by the VpreB and λ5 pre-B cell-specific genes can associate with each other and with μ heavy chain. J. Exp. Med. 172, 969–972 (1990).

    Article  CAS  Google Scholar 

  26. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  Google Scholar 

  27. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  28. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  29. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  30. Yu, W. et al. Coordinate regulation of Rag1 and Rag2 by cell type-specific DNA elements 5′ of Rag2. Science 285, 1080–1084 (1999).

    Article  CAS  Google Scholar 

  31. Yu, W. et al. Continued Rag expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400, 682–687 (1999).

    Article  CAS  Google Scholar 

  32. Wang, B. et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131, 4477–4487 (2004).

    Article  CAS  Google Scholar 

  33. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  Google Scholar 

  34. Tsubata, T. & Reth, M. The products of pre-B cell-specific genes (λ5 and VpreB) and the immunoglobulin μ chain form a complex that is transported onto the cell surface. J. Exp. Med. 172, 973–976 (1990).

    Article  CAS  Google Scholar 

  35. Melchers, F. Fit for life in the immune system? Surrogate L chain tests H chains that test L chains. Proc. Natl. Acad. Sci. USA 96, 2571–2573 (1999).

    Article  CAS  Google Scholar 

  36. Goebel, P. et al. Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B cell factor in nonlymphoid cells. J. Exp. Med. 194, 645–656 (2001).

    Article  CAS  Google Scholar 

  37. Hsu, L.Y. et al. A conserved transcriptional enhancer regulates Rag gene expression in developing B cells. Immunity 19, 105–117 (2003).

    Article  CAS  Google Scholar 

  38. Nardone, J., Lee, D.U., Ansel, K.M. & Rao, A. Bioinformatics for the 'bench biologist': how to find regulatory regions in genomic DNA. Nat. Immunol. 5, 768–774 (2004).

    Article  CAS  Google Scholar 

  39. Davidson, W.F., Pierce, J.H., Rudikoff, S. & Morse, H.C., III. Relationships between B cell and myeloid differentiation. Studies with a B lymphocyte progenitor line, HAFTL-1. J. Exp. Med. 168, 389–407 (1988).

    Article  CAS  Google Scholar 

  40. Wu, G.E. & Paige, C.J. VH gene family utilization in colonies derived from B and pre-B cells detected by the RNA colony blot assay. EMBO J. 5, 3475–3481 (1986).

    Article  CAS  Google Scholar 

  41. Connor, A.M. et al. Mouse VH7183 recombination signal sequences mediate recombination more frequently than those of VHJ558. J. Immunol. 155, 5268–5272 (1995).

    CAS  PubMed  Google Scholar 

  42. Rolink, A. et al. In-vitro analyses of mechanisms of B-cell development. Semin. Immunol. 7, 155–167 (1995).

    Article  CAS  Google Scholar 

  43. Bain, G. et al. Both E12 and E47 allow commitment to the B cell lineage. Immunity 6, 145–154 (1997).

    Article  CAS  Google Scholar 

  44. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    Article  CAS  Google Scholar 

  45. Hirose, J. et al. A developing picture of lymphopoiesis in bone marrow. Immunol. Rev. 189, 28–40 (2002).

    Article  CAS  Google Scholar 

  46. Sagara, S. et al. B220 expression by T lymphoid progenitor cells in mouse fetal liver. J. Immunol. 158, 666–676 (1997).

    CAS  PubMed  Google Scholar 

  47. Purohit, S.J. et al. Determination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J. 22, 5511–5521 (2003).

    Article  CAS  Google Scholar 

  48. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  49. Reichlin, A. et al. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin β. J. Exp. Med. 193, 13–23 (2001).

    Article  CAS  Google Scholar 

  50. Gong, S. & Nussenzweig, M.C. Regulation of an early developmental checkpoint in the B cell pathway by Ig-β. Science 272, 411–414 (1996).

    Article  CAS  Google Scholar 

  51. Pelanda, R., Braun, U., Hobeika, E., Nussenzweig, M.C. & Reth, M. B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-α and Ig-β. J. Immunol. 169, 865–872 (2002).

    Article  CAS  Google Scholar 

  52. Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).

    Article  CAS  Google Scholar 

  53. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  Google Scholar 

  54. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rajewsky, S. Casola, K. Otipoby, C. Xiao, G. Galler, K. Mark Ansel and H. Liu for reagents and discussions; S. Monticelli for critical reading of the manuscript; B. Tanasa for help with the bioinformatic analyses; L. Smith for preparing genomic DNA for genotyping; C. Das and C. Schmidt for technical help; and N. Barteneva and K. Ketman for flow cytometry. Supported by the National Institutes of Health (T32 to H.H.; CA42471, AI48213 and AI44432 to A.R.; and HL071160, CA92318 and CA31534 to P.W.T.) and the Mary Betzner Morrow Centennial endowment in Molecular Genetics (P.W.T.).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and A.R. initiated the collaboration with P.W.T. to analyze the immune phenotype of Foxp1−/− mice; B.W. and S.M. generated the Foxp1−/− mice; H.H. was responsible for all analyses of B cell development in fetal liver chimeras and in vitro pro–B cell cultures, including analysis of Foxp1 expression and chromatin immunoprecipitation assays; L.A. did EMSA and footprinting experiments under the supervision of P.W.T.; M.B. helped with mouse breeding and fetal liver collection; J.N. helped with bioinformatic analysis; and A.R. and P.W.T. provided overall supervision.

Corresponding authors

Correspondence to Hui Hu or Anjana Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene targeting strategy, expression pattern of Foxp1 at different B cell developmental stages and the kinetics of peripheral B cell recovery in reconstituted RAG2-deficient recipient mice. (PDF 688 kb)

Supplementary Fig. 2

No difference in total peripheral B cell numbers between Foxp1+/+ and Foxp1+/− mice. (PDF 378 kb)

Supplementary Fig. 3

Foxp1−/− thymocyte development. (PDF 415 kb)

Supplementary Fig. 4

Expression of IL-7R on Foxp1+/− or Foxp1−/− pro-B cells and Foxp1 ChIP in thymocytes. (PDF 354 kb)

Supplementary Fig. 5

Identification of Foxp1 binding sites within KpnI-PvuII region by DNase I footprinting and EMSA. (PDF 1430 kb)

Supplementary Fig. 6

Donor cell recovery in reconstituted RAG2-deficient recipients. (PDF 410 kb)

Supplementary Table 1

Sequences of primers for Foxp1 expression and B lineage gene expression. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Wang, B., Borde, M. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol 7, 819–826 (2006). https://doi.org/10.1038/ni1358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing