Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of T lymphopoiesis by Notch1 and Lunatic fringe–mediated competition for intrathymic niches

Abstract

Notch1 activation regulates T lineage commitment and early T cell development. Fringe glycosyltransferases alter the sensitivity of Notch receptors to Delta-like versus Jagged Notch ligands, but their functions in T lymphopoiesis have not been defined. Here we show that developmental stage–specific expression of the glycosyltransferase lunatic fringe (Lfng) is required for coordination of the access of T cell progenitors to intrathymic niches that support Notch1-dependent phases of T cell development. Lfng-null progenitors generated few thymocytes in competitive assays, whereas Lfng overexpression converted thymocytes into 'supercompetitors' with enhanced binding of Delta-like ligands and blocked T lymphopoiesis from normal progenitors. We suggest that the ability of Lfng and Notch1 to control progenitor competition for limiting cortical niches is an important mechanism for the homeostatic regulation of thymus size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of endogenous and transgenic Lfng mRNA in thymocyte subsets.
Figure 2: Lfng−/− progenitors fail to efficiently reconstitute the thymus in mixed chimeras.
Figure 3: Increased binding of Dll1 by Tg+ thymocytes.
Figure 4: Transgenic Lfng converts T cell precursors into 'supercompetitors'.
Figure 5: Lfng−/− progenitors generate T cells on OP9-Dll1 stromal cells.
Figure 6: Lfng-Notch1 interactions regulate access of T cell progenitors to DN3 niches.
Figure 7: Notch1 heterozygosity reduces B cell development and restores T cell development in Tg+ thymic lobes.
Figure 8: Tg+ DP thymocytes block TSP access to CMJ niches.

Similar content being viewed by others

References

  1. Koch, U., Yuan, J.S., Harper, J.A. & Guidos, C.J. Fine-tuning Notch1 activation by endocytosis and glycosylation. Semin. Immunol. 15, 99–106 (2003).

    Article  CAS  Google Scholar 

  2. Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  Google Scholar 

  3. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by Lunatic Fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    Article  CAS  Google Scholar 

  4. Wilson, A., MacDonald, H.R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  5. Izon, D.J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  Google Scholar 

  6. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    Article  CAS  Google Scholar 

  7. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  Google Scholar 

  8. Tan, J.B., Visan, I., Yuan, J.S. & Guidos, C.J. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat. Immunol. 6, 671–679 (2005).

    Article  CAS  Google Scholar 

  9. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663–670 (2005).

    Article  CAS  Google Scholar 

  10. Huang, E.Y., Gallegos, A.M., Richards, S.M., Lehar, S.M. & Bevan, M.J. Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J. Immunol. 171, 2296–2304 (2003).

    Article  CAS  Google Scholar 

  11. Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zuniga-Pflucker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  12. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  13. Ciofani, M. & Zuniga-Pflucker, J.C. Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 6, 881–888 (2005).

    Article  CAS  Google Scholar 

  14. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  Google Scholar 

  15. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  Google Scholar 

  16. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  Google Scholar 

  17. Tu, L. et al. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med. 202, 1037–1042 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  18. Maekawa, Y. et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549–559 (2003).

    Article  CAS  Google Scholar 

  19. Minter, L.M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat. Immunol. 6, 680–688 (2005).

    Article  CAS  Google Scholar 

  20. Deftos, M.L., Huang, E., Ojala, E.W., Forbush, K.A. & Bevan, M.J. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  21. Izon, D.J. et al. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14, 253–264 (2001).

    Article  CAS  Google Scholar 

  22. Fowlkes, B.J. & Robey, E.A. A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. J. Immunol. 169, 1817–1821 (2002).

    Article  CAS  Google Scholar 

  23. Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  24. Foss, D.L., Donskoy, E. & Goldschneider, I. Functional demonstration of intrathymic binding sites and microvascular gates for prothymocytes in irradiated mice. Int. Immunol. 14, 331–338 (2002).

    Article  CAS  Google Scholar 

  25. Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  26. Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  27. Porritt, H.E., Gordon, K. & Petrie, H.T. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J. Exp. Med. 198, 957–962 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  28. Prockop, S.E. & Petrie, H.T. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J. Immunol. 173, 1604–1611 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  29. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–843 (1997).

    Article  CAS  Google Scholar 

  30. Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    Article  CAS  Google Scholar 

  31. Jaleco, A.C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  32. Lehar, S.M., Dooley, J., Farr, A.G. & Bevan, M.J. Notch ligands Delta1 and Jagged1 transmit distinct signals to T cell precursors. Blood (2004).

  33. Haines, N. & Irvine, K.D. Glycosylation regulates Notch signalling. Nat. Rev. Mol. Cell Biol. 4, 786–797 (2003).

    Article  CAS  Google Scholar 

  34. Munro, S. & Freeman, M. The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr. Biol. 10, 813–820 (2000).

    Article  CAS  Google Scholar 

  35. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2, 515–520 (2000).

    Article  CAS  Google Scholar 

  36. Panin, V.M., Papayannopoulos, V., Wilson, R. & Irvine, K.D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  Google Scholar 

  37. de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  38. Oka, C. et al. Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  Google Scholar 

  39. Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    Article  CAS  Google Scholar 

  40. Dale, J.K. et al. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003).

    Article  CAS  Google Scholar 

  41. Serth, K., Schuster-Gossler, K., Cordes, R. & Gossler, A. Transcriptional oscillation of lunatic fringe is essential for somitogenesis. Genes Dev. 17, 912–925 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  42. Phillips, R.L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    Article  CAS  Google Scholar 

  43. Shimizu, K. et al. Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J. Biol. Chem. 276, 25753–25758 (2001).

    Article  CAS  Google Scholar 

  44. Evrard, Y.A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R.L. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  CAS  Google Scholar 

  45. Morrison, S.J., Hemmati, H.D., Wandycz, A.M. & Weissman, I.L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  Google Scholar 

  46. Yang, L.T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  47. Jarriault, S. et al. Delta-1 activation of Notch-1 signaling results in HES-1 transactivation. Mol. Cell. Biol. 18, 7423–7431 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  48. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  49. Akashi, K., Richie, L.I., Miyamoto, T., Carr, W.H. & Weissman, I.L. B lymphopoiesis in the thymus. J. Immunol. 164, 5221–5226 (2000).

    Article  CAS  Google Scholar 

  50. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L.A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article  CAS  Google Scholar 

  51. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  Google Scholar 

  52. Hozumi, K. et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat. Immunol. 5, 638–644 (2004).

    Article  CAS  Google Scholar 

  53. Deftos, M.L., He, Y.W., Ojala, E.W. & Bevan, M.J. Correlating Notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  54. Hasserjian, R.P., Aster, J.C., Davi, F., Weinberg, D.S. & Sklar, J. Modulated expression of notch1 during thymocyte development. Blood 88, 970–976 (1996).

    CAS  PubMed  Google Scholar 

  55. Witt, C.M., Hurez, V., Swindle, C.S., Hamada, Y. & Klug, C.A. Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol. Cell. Biol. 23, 8637–8650 (2003).

    Article  CAS  Google Scholar 

  56. Visan, I., Yuan, J.S., Tan, J.B., Cretegny, K. & Guidos, C.J. Regulation of intrathymic T-cell development by Lunatic Fringe-Notch1 interactions. Immunol. Rev. 209, 76–94 (2006).

    Article  CAS  Google Scholar 

  57. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  Google Scholar 

  58. Kitamoto, T. et al. Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem. Biophys. Res. Commun. 331, 1154–1162 (2005).

    Article  CAS  Google Scholar 

  59. Visan, I., Yuan, J.S., Tan, J.B., Cretegny, K. & Guidos, C.J. Regulation of intrathymic T cell development by Lunatic Fringe-Notch1 interactions. Immunol. Rev. 209, 76–94 (2006).

    Article  CAS  Google Scholar 

  60. Huang, Y.H., Li, D., Winoto, A. & Robey, E.A. Distinct transcriptional programs in thymocytes responding to T cell receptor, Notch, and positive selection signals. Proc. Natl. Acad. Sci. USA 101, 4936–4941 (2004).

    Article  CAS  Google Scholar 

  61. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-C. Zuniga-Pflucker (Sunnybrook and Women's College Hospital, Toronto, Canada) for OP9-GFP and OP9-Dll1 stromal cells; S. Egan and J. Danska (Hospital for Sick Children, Toronto, Canada) and A. Bhandoola (University of Pennsylvania, Philadelphia, Pennsylvania) for discussions and critical reading of the manuscript; and K. Yasutomo (University of Tokushima, Tokushima, Japan) for sharing unpublished data. Supported by the Canadian Institutes of Health Research (C.J.G.) and the Hospital for Sick Children (J.S.Y. and J.B.T.)

Author information

Authors and Affiliations

Authors

Contributions

I.V., J.B.T., J.S.Y., J.A.H. and U.K. did experimental work and analyzed data; C.J.G. supervised the experimental work; and I.V. and C.J.G. wrote the manuscript.

Corresponding author

Correspondence to Cynthia J Guidos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Niche exclusion model. (PDF 161 kb)

Supplementary Table 1

Production of DP and B220+ thymocytes from Lfng−/− FL in single versus mixed chimeras. (PDF 45 kb)

Supplementary Table 2

DP thymocyte production from Lfng Tg+ BM progenitors alone or in competition with non-transgenic BM progenitors. (PDF 46 kb)

Supplementary Table 3

DP thymocyte and B cell production after injection of non-transgenic or Lfng Tg+ BM progenitors into unconditioned hosts. (PDF 53 kb)

Supplementary Table 4

Effect of Notch1 heterozygosity on abundance of thymic B cells and DP thymocytes in non-transgenic and Lfng Tg+ mice. (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visan, I., Tan, J., Yuan, J. et al. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe–mediated competition for intrathymic niches. Nat Immunol 7, 634–643 (2006). https://doi.org/10.1038/ni1345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing