Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor Pax5 (BSAP) transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes

Abstract

Immunoglobulin rearrangement from variable heavy chain (VH) to diversity (D)–joining heavy chain (JH), which occurs exclusively in B lineage cells, is impaired in mice deficient for the B lineage–specific transcription factor Pax5. Conversely, ectopic Pax5 expression in thymocytes promotes the rearrangement of DH-proximal VH7183 genes. In exploring the mechanism for Pax5 regulation of VH-to-DJH recombination, we have identified multiple Pax5 binding sites in the coding regions of human and mouse VH gene segments. Pax5 bound to those sites in vitro and occupied VH genes in early human and mouse B lineage cells. Moreover, Pax5 interacted with the recombination-activating gene 1 (RAG1)–RAG2 complex to enhance RAG-mediated VH recombination signal sequence cleavage and recombination of a VH gene substrate. These findings indicate a direct activating function for Pax5 in RAG-mediated immunoglobulin VH-to-DJH recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro analysis of the association of Pax5 with VH coding regions.
Figure 2: Pax5 associates with VH coding regions in developing B lineage cells.
Figure 3: Interaction of Pax5 with RAG1 and RAG2 proteins.
Figure 4: Physical interaction of Pax5 with the RAG1-RAG2 complex.
Figure 5: Pax5 enhances RAG-mediated VH RSS cleavage.
Figure 6: Pax5 enhances RAG-mediated recombination of VH gene substrates.
Figure 7: Ectopic expression of Pax5, E47, RAG1 and RAG2 induces IGH@ VH-to-DJH recombination in 293T cells.

Similar content being viewed by others

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Lewis, S.M. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56, 27–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Turka, L.A. et al. Thymocyte expression of RAG-1 and RAG-2: termination by T cell receptor cross-linking. Science 253, 778–781 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Sleckman, B.P., Gorman, J.R. & Alt, F.W. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14, 459–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Yancopoulos, G.D. & Alt, F.W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Blackwell, T.K. et al. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature 324, 585–589 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Schlissel, M.S. & Baltimore, D. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline κ gene transcription. Cell 58, 1001–1007 1989.

    Article  CAS  PubMed  Google Scholar 

  15. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Roth, D.B. & Roth, S.Y. Unequal access: regulating V(D)J recombination through chromatin remodeling. Cell 103, 699–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kwon, J., Imbalzano, A.N., Matthews, A. & Oettinger, M.A. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Golding, A., Chandler, S., Ballestar, E., Wolffe, A.P. & Schlissel, M.S. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J. 18, 3712–3723 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon, J., Morshead, K.B., Guyon, J.R., Kingston, R.E. & Oettinger, M.A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of V(D)J recombination. Science 287, 495–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Burrows, P., LeJeune, M. & Kearney, J.F. Evidence that murine pre-B cells synthesise μ heavy chains but no light chains. Nature 280, 838–840 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Kurosawa, Y. et al. Identification of D segments of immunoglobulin heavy-chain genes and their rearrangement in T lymphocytes. Nature 290, 565–570 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Lassoued, K. et al. Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 73, 73–86 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Karasuyama, H. et al. The expression of Vpre-B/λ5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77, 133–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Schebesta, M., Heavey, B. & Busslinger, M. Transcriptional control of B-cell development. Curr. Opin. Immunol. 14, 216–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh, J.K., Romanow, W.J. & Murre, C. Induction of a diverse T cell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J. Exp. Med. 193, 769–776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goebel, P. et al. Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B cell factor in nonlymphoid cells. J. Exp. Med. 194, 645–656 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Czerny, T. & Busslinger, M. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol. Cell. Biol. 15, 2858–2871 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roldan, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu, L.Y., Liang, H.E., Johnson, K., Kang, C. & Schlissel, M.S. Pax5 activates immunoglobulin heavy chain V to DJ rearrangement in transgenic thymocytes. J. Exp. Med. 199, 825–830 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y.H. et al. V(D)J recombinatorial repertoire diversification during intraclonal pro-B to B-cell differentiation. Blood 101, 1030–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Z. et al. Contribution of VH gene replacement to the primary B cell repertoire. Immunity 19, 21–31 (2003).

    Article  PubMed  Google Scholar 

  42. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K.A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Hiom, K. & Gellert, M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1, 1011–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Love, V.A., Lugo, G., Merz, D. & Feeney, A.J. Individual VH promoters vary in strength, but the frequency of rearrangement of those VH genes does not correlate with promoter strength nor enhancer-independence. Mol. Immunol. 37, 29–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Fitzsimmons, D. et al. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 10, 2198–2211 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Garvie, C.W., Hagman, J. & Wolberger, C. Structural studies of Ets-1/Pax5 complex formation on DNA. Mol. Cell 8, 1267–1276 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Eberhard, D., Jimenez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eberhard, D. & Busslinger, M. The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins. Cancer Res. 59, 1716s–1724s (1999).

    CAS  PubMed  Google Scholar 

  49. Emelyanov, A.V., Kovac, C.R., Sepulveda, M.A. & Birshtein, B.K. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J. Biol. Chem. 277, 11156–11164 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Maier, H. et al. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-α gene transcription by Pax-5 (BSAP). Nucleic Acids Res. 31, 5483–5489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lieber, M.R., Hesse, J.E., Mizuuchi, K. & Gellert, M. Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints. Proc. Natl. Acad. Sci. USA 85, 8588–8592 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Busslinger (Research Institute of Molecular Pathology, Vienna, Austria) for the Pax5 expression vectors and discussions; D. Roth (Baylor College of Medicine, Houston, Texas), M. Gellert (National Institutes of Health, Bethesda, Maryland) and D. Schatz (Yale University, New Haven, Connecticut) for the pEBG-RAG1, pEBG-RAG2, pJH289 and pJH290 vectors, protocols for RAG protein purification and in vitro cleavage assays, and discussions; S. Desiderio (Johns Hopkins University, Baltimore, Maryland) for antibodies to RAG1 and RAG2, pCDNA1-RAG1 and pCDNA1-RAG2 expression vectors, and suggestions; Y. Kubagawa for DNA sequencing; and members of the laboratories of M.D.C., Z.Z., A.J.F. and J.H. for discussions. Supported by the National Institutes of Health (AI39816 and AI48098; AI56322, AI54661 and CA107478 to J.H.; and AI52313 to the laboratory of A.J.F.), the National Institutes of Health–National Institute of Arthritis, Musculoskeletal and Skin Diseases (K01 AR048592 to Z.Z.) and the Howard Hughes Medical Institute (M.D.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixin Zhang or Max D Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of candidate Pax5 binding sites from the VH genes with the consensus Pax5 binding sites. (PDF 16 kb)

Supplementary Fig. 2

Pax5 association with the VH1-8-Pax5 binding sites. (PDF 114 kb)

Supplementary Fig. 3

Pax5 association with the individual mouse VH gene Pax5 binding sites. (PDF 338 kb)

Supplementary Fig. 4

Interaction of Pax5 with the RAG1/RAG2 complex. (PDF 103 kb)

Supplementary Fig. 5

Effects of Pax5 on RAG-mediated cleavage and recombination. (PDF 46 kb)

Supplementary Fig. 6

Effects of Gal4-Pax5-ΔB on RAG-mediated recombination of pJH298-G4RSS constructs. (PDF 36 kb)

Supplementary Table 1

Identification of potential Pax5 binding sites within human VH1 family of VH genes. (PDF 40 kb)

Supplementary Table 2

Identification of potential Pax5 binding sites within human VH3 family of VH genes. (PDF 48 kb)

Supplementary Table 3

Identification of potential Pax5 binding sites within human VH4 family of VH genes. (PDF 38 kb)

Supplementary Table 4

Identification of potential Pax5 binding sites within mouse VHJ558 family of VH genes. (PDF 119 kb)

Supplementary Table 5

Identification of potential Pax5 binding sites within mouse VH7183 family of VH genes. (PDF 62 kb)

Supplementary Table 6

Identification of potential Pax5 binding sites within mouse VHS107 family of VH genes. (PDF 40 kb)

Supplementary Table 7

Summary of potential Pax5 binding sites within human and mouse VH genes. (PDF 35 kb)

Supplementary Table 8

Sequence analysis of V(D)J joint obtained from 293T cells expressing RAG1, RAG2, E47, and Pax5. (PDF 43 kb)

Supplementary Table 9

List of oligonucleotide sequences. (PDF 78 kb)

Supplementary Methods (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Espinoza, C., Yu, Z. et al. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes. Nat Immunol 7, 616–624 (2006). https://doi.org/10.1038/ni1339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing