Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor–mediated lipid raft dynamics

Abstract

Ligation of the B cell antigen receptor (BCR) with antigen induces lipid raft coalescence, a process that occurs after crosslinking of a variety of signaling receptors and is thought to potentiate cellular activation. To investigate lipid raft dynamics during BCR signaling, we quantitatively analyzed the B cell lipid raft proteome. BCR engagement induced dissociation of the adaptor protein ezrin from lipid rafts as well as threonine dephosphorylation of ezrin and its concomitant detachment from actin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Expression of constitutively active ezrin chimeras inhibited the BCR-induced coalescence of lipid rafts. Our data demonstrate that the release of ezrin from lipid rafts acts as a critical trigger that regulates lipid raft dynamics during BCR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of lipid rafts for ICAT-based quantitative mass spectrometry.
Figure 2: BCR ligation induces changes in the subcellular localization of ezrin and its association with lipid rafts and the lipid raft–associated protein Cbp.
Figure 3: BCR ligation induces changes in ezrin Thr 567 phosphorylation and in the association of ezrin with actin.
Figure 4: Dominant positive mutants of ezrin.
Figure 5: Chimeric ezrin blocks BCR-induced lipid raft coalescence.

Similar content being viewed by others

References

  1. DeFranco, A.L. The complexity of signaling pathways activated by the BCR. Curr. Opin. Immunol. 9, 296–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Siemasko, K. & Clark, M.R. The control and facilitation of MHC class II antigen processing by the BCR. Curr. Opin. Immunol. 13, 32–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Pierce, S.K. Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2, 96–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, D.A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Kurzchalia, T.V. & Parton, R.G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G. & Brown, D.A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, P.C., Dykstra, M.L., Mitchell, R.N. & Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Petrie, R.J., Schnetkamp, P.P., Patel, K.D., Awasthi-Kalia, M. & Deans, J.P. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J. Immunol. 165, 1220–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gupta, N. & DeFranco, A.L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 14, 432–444 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guo, B., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. & Rawlings, D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, P.C., Brown, B.K., Song, W. & Pierce, S.K. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J. Immunol. 166, 3693–3701 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Langhorst, M.F., Reuter, A. & Stuermer, C.A. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell. Mol. Life Sci. 62, 2228–2240 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, H., Boyle, R. & Aebersold, R. Quantitative protein analysis by solid phase isotope tagging and mass spectrometry. Methods Mol. Biol. 261, 511–518 (2004).

    CAS  PubMed  Google Scholar 

  16. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885–895 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Serrador, J.M. et al. CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 91, 4632–4644 (1998).

    CAS  PubMed  Google Scholar 

  19. Tsukita, S. et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391–401 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Alonso-Lebrero, J.L. et al. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood 95, 2413–2419 (2000).

    CAS  PubMed  Google Scholar 

  21. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Itoh, K. et al. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J. Immunol. 168, 541–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Louvet-Vallee, S. ERM proteins: from cellular architecture to cell signaling. Biol. Cell. 92, 305–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, L., Wong, T.Y., Lin, R.C. & Furthmayr, H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J. Biol. Chem. 274, 12803–12810 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-kappa B activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-κB activation. Immunity 23, 561–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Bretscher, A. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol. 11, 109–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, J., Miller, M.J. & Shaw, A.S. The c-SMAC: sorting it all out (or in). J. Cell Biol. 170, 177–182 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Brown, M.J. et al. Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102, 3890–3899 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol. 5, 272–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tomas, E.M., Chau, T.A. & Madrenas, J. Clustering of a lipid-raft associated pool of ERM proteins at the immunological synapse upon T cell receptor or CD28 ligation. Immunol. Lett. 83, 143–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Allenspach, E.J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cullinan, P., Sperling, A.I. & Burkhardt, J.K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev. 189, 111–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Pedrioli, P.G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Yates, J.R., III, Eng, J.K., McCormack, A.L. & Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67, 1426–1436 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Saeki, K., Miura, Y., Aki, D., Kurosaki, T. & Yoshimura, A. The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J. 22, 3015–3026 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Barber (University of California at San Francisco) and members of the DeFranco lab for discussions, and C. MacArthur (Howard Hughes Medical Institute, University of California at San Francisco) for cell sorting. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases (DK068292 to N.G.), the National Institutes of Health (AI20038 to A.L.D. and AI41109 to J.D.W.) and the National Heart, Lung, and Blood Institute (N01-HV-28179 to the Seattle Proteome Center at the Institute for Systems Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L DeFranco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Regulation of lipid raft coalescence by ezrin. (PDF 660 kb)

Supplementary Fig. 2

Blockade of lipid raft coalesence does not affect upstream signaling events. (PDF 163 kb)

Supplementary Fig. 3

Blockade of lipid raft coalesence does not affect CD69 upregulation. (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Wollscheid, B., Watts, J. et al. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor–mediated lipid raft dynamics. Nat Immunol 7, 625–633 (2006). https://doi.org/10.1038/ni1337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing