Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella

Abstract

Flagellin induces inflammatory and innate immune responses through activation of Toll-like receptor 5. Here we show that proinflammatory monomeric flagellin produced by salmonella during infection of intestinal epithelial cells was not derived from polymeric bacterial cell wall–associated flagellum but instead was synthesized and secreted de novo by the bacterium after direct sensing of host-produced lysophospholipids. Inhibition of lysophospholipid biosynthesis in intestinal epithelial cells reduced flagellin production and release from salmonella. Lysophospholipids induced a cAMP-dependent signaling pathway in salmonella that resulted in production and secretion of active flagellin. The induction of Toll-like receptor ligand synthesis and secretion by a host signal represents a previously unknown regulatory mechanism for inflammation and innate immunity during infection with a bacterial pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contact with IECs activates release of proinflammatory flagellin from pathogenic salmonella.
Figure 2: The host stimulus that induces flagellin release from salmonella is not proteinaceous.
Figure 3: Lysophospholipids trigger secretion of flagellin from salmonella.
Figure 4: Lysophospholipids are the active components of the Caco-2-mediated release of flagellin from S. typhi.
Figure 5: Inhibition of iPLA2 ex vivo or in vivo reduces the ability C57BL/6 intestinal cells to trigger flagellin from S. typhimurium.
Figure 6: De novo expression of flagellin stimulated by host lysophospholipids.
Figure 7: Secretion of flagellin after activation of salmonella with LPC is regulated by cAMP.

Similar content being viewed by others

References

  1. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Ramos, H.C., Rumbo, M. & Sirard, J.C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12, 509–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. La Ragione, R.M., Cooley, W.A., Velge, P., Jepson, M.A. & Woodward, M.J. Membrane ruffling and invasion of human and avian cell lines is reduced for aflagellate mutants of Salmonella enterica serotype Enteritidis. Int. J. Med. Microbiol. 293, 261–272 (2003).

    Article  PubMed  Google Scholar 

  4. Barnich, N., Boudeau, J., Claret, L. & Darfeuille-Michaud, A. Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn's disease. Mol. Microbiol. 48, 781–794 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt, C.K. et al. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Robertson, J.M. et al. Lack of flagella disadvantages Salmonella enterica serovar Enteritidis during the early stages of infection in the rat. J. Med. Microbiol. 52, 91–99 (2003).

    Article  PubMed  Google Scholar 

  7. Chua, K.L., Chan, Y.Y. & Gan, Y.H. Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71, 1622–1629 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Feldman, M. et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cookson, B.T. & Bevan, M.J. Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J. Immunol. 158, 4310–4319 (1997).

    CAS  PubMed  Google Scholar 

  10. McSorley, S.J., Cookson, B.T. & Jenkins, M.K. Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J. Immunol. 164, 986–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Sitaraman, S.V. et al. Elevated flagellin-specific immunoglobulins in Crohn's Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G403–G406 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ochoa-Reparaz, J. et al. Humoral immune response in hens naturally infected with Salmonella Enteritidis against outer membrane proteins and other surface structural antigens. Vet. Res. 35, 291–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Cawthraw, S.A., Feldman, R.A., Sayers, A.R. & Newell, D.G. Long-term antibody responses following human infection with Campylobacter jejuni. Clin. Exp. Immunol. 130, 101–106 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sbrogio-Almeida, M.E. & Ferreira, L.C. Flagellin expressed by live Salmonella vaccine strains induces distinct antibody responses following delivery via systemic or mucosal immunization routes. FEMS Immunol. Med. Microbiol. 30, 203–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Ciacci-Woolwine, F., Blomfield, I.C., Richardson, S.H. & Mizel, S.B. Salmonella flagellin induces tumor necrosis factor α in a human promonocytic cell line. Infect. Immun. 66, 1127–1134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Eaves-Pyles, T. et al. Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 166, 1248–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Means, T.K., Hayashi, F., Smith, K.D., Aderem, A. & Luster, A.D. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170, 5165–5175 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Didierlaurent, A. et al. Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J. Immunol. 172, 6922–6930 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. McSorley, S.J., Ehst, B.D., Yu, Y. & Gewirtz, A.T. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J. Immunol. 169, 3914–3919 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gewirtz, A.T. et al. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Abreu, M.T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, K.D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1255 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Chantret, I., Barbat, A., Dussaulx, E., Brattain, M.G. & Zweibaum, A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48, 1936–1942 (1988).

    CAS  PubMed  Google Scholar 

  26. Sharma, A. & Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl. Acad. Sci. USA 101, 17492–17497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moolenaar, W.H., Kranenburg, O., Postma, F.R. & Zondag, G.C. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr. Opin. Cell Biol. 9, 168–173 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Dennis, E.A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269, 13057–13060 (1994).

    CAS  PubMed  Google Scholar 

  29. Franson, R.C., Rosenthal, M.D. & Regelson, W. Mechanism(s) of cytoprotective and anti-inflammatory activity of PGB1 oligomers: PGBx has potent anti-phospholipase A2 and anti-oxidant activity. Prostaglandins Leukot. Essent. Fatty Acids 43, 63–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Conde-Frieboes, K. et al. Activated ketones as inhibitors of intracellular Ca2+-dependent and Ca2+-independent phospholipase A2 . J. Am. Chem. Soc. 118, 5519–5525 (1996).

    Article  CAS  Google Scholar 

  31. Kim, S.J., Gershov, D., Ma, X., Brot, N. & Elkon, K.B. I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J. Exp. Med. 196, 655–665 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Karlinsey, J.E., Lonner, J., Brown, K.L. & Hughes, K.T. Translation/secretion coupling by type III secretion systems. Cell 102, 487–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kutsukake, K., Ohya, Y. & Lino, T. Transcriptional analysis of flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741–747 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Curtiss, R., III & Kelly, S.M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749–795 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Panther, E. et al. The influence of lysophosphatidic acid on the functions of human dendritic cells. J. Immunol. 169, 4129–4135 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Goetzl, E.J., Kong, Y. & Voice, J.K. Cutting edge: Differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J. Immunol. 164, 4996–4999 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Keuter, M. et al. Phospholipase A2 is a circulating mediator in typhoid fever. J. Infect. Dis. 172, 305–308 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. McCleary, W.R. & Stock, J.B. Phosphorylation in bacterial chemotaxis. In Signal Transduction: Prokaryotic and Simple Eukaryotic Systems (eds. J. Kurjan. J. & Taylor, B.L.) 17–41 (Academic, San Deigo, 1993).

    Chapter  Google Scholar 

  40. Radu, C.G., Yang, L.V., Riedinger, M., Au, M. & Witte, O.N. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. USA 101, 245–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Rhee, S.H., Im, E., Riegler, M., Kokkotou, E., O'brien, M. & Pothoulakis, C. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl. Acad. Sci. USA 102, 13610–13615 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cummings, L.A., Barrett, S.L., Wilkerson, W.D., Fellnerova, I. & Cookson, B.T. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J. Immunol. 174, 7929–7938 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Crellin, N.K. et al. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J. Immunol. 175, 8051–8059 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Qadri, A., Ghosh, S., Upadhyay, S. & Talwar, G.P. Monoclonal antibodies against flagellar antigen of Salmonella typhi. Hybridoma 8, 353–360 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Qadri, A., Gupta, S.K. & Talwar, G.P. Monoclonal antibodies delineate multiple epitopes on the O antigens of Salmonella typhi lipopolysaccharide. J. Clin. Microbiol. 26, 2292–2296 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Baker, D.L., Desiderio, D.M., Miller, D.D., Tolley, B. & Tigyi, G.J. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal. Biochem. 292, 287–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Henderson, R.J. & Tocher, D.R. Thin layer chromatograph. in Lipid Analysis (eds. Hamilton, R.J. & Hamilton, S.) 65–111 (Oxford University Press, Oxford, UK, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank S.K. Basu and S. Rath, R. Pal and D. Sehgal for critical reading of the manuscript; R.A. Vishwakarma for suggestions during lipid analysis; and A. Sakya for help with mass spectrometry. Supported by the Department of Biotechnology of the Government of India (to the National Institute of Immunology) and the Council of Scientific and Industrial Research of India (N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayub Qadri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

IL-8 secretion from Caco-2 cells in response to infection with S. typhi requires metabolically active bacteria. (PDF 95 kb)

Supplementary Fig. 2

S. typhimurium membrane inhibits LPA-induced release of flagellin from S. typhi. (PDF 64 kb)

Supplementary Fig. 3

Identification of LPC in Caco-2 culture supernatant by mass spectrometric analysis. (PDF 114 kb)

Supplementary Fig. 4

LPC does not cause shearing of S. typhi flagella. (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, N., Qadri, A. Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella. Nat Immunol 7, 583–589 (2006). https://doi.org/10.1038/ni1336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing