Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells

Abstract

Antigen-specific memory T cells are a critical component of protective immunity because of their increased frequency and enhanced reactivity after restimulation. However, it is unclear whether 'memory-like' T cells generated during lymphopenia-induced homeostatic proliferation can also offer protection against pathogens. Here we show that homeostatic proliferation–induced memory (HP-memory) CD8+ T cells controlled bacterial infection as effectively as 'true' memory CD8+ T cells, but their protective capacity required the presence of CD4+ T cells during homeostatic proliferation. The necessity for CD4 help was overcome, however, if the HP-memory CD8+ T cells lacked expression of TRAIL (tumor necrosis factor–related apoptosis-inducing ligand; also called Apo-2L). Thus, like conventional CD8+ memory T cells, the protective function of HP-memory CD8+ T cells shows dependence on CD4+ T cell help.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HP-memory T cells provide robust protection against L. monocytogenes infection.
Figure 2: HP-memory T cells from MHC class II–deficient hosts do not protect against bacterial challenge.
Figure 3: Phenotype and functional comparisons show HP-memory OT-I T cells and true memory T cells are similar.
Figure 4: Proliferation and differentiation of HP-memory OT-I T cells after LM-OVA challenge.
Figure 5: TRAIL expression correlates with failure to provide protective immunity.
Figure 6: HP-memory–II-KO cells do not inhibit HP-memory–B6 cells.

Similar content being viewed by others

References

  1. Masopust, D., Kaech, S.M., Wherry, E.J. & Ahmed, R. The role of programming in memory T-cell development. Curr. Opin. Immunol. 16, 217–225 (2004).

    Article  CAS  Google Scholar 

  2. Harty, J.T. & Badovinac, V.P. Influence of effector molecules on the CD8+ T cell response to infection. Curr. Opin. Immunol. 14, 360–365 (2002).

    Article  CAS  Google Scholar 

  3. Bourgeois, C., Veiga-Fernandes, H., Joret, A.M., Rocha, B. & Tanchot, C. CD8 lethargy in the absence of CD4 help. Eur. J. Immunol. 32, 2199–2207 (2002).

    Article  CAS  Google Scholar 

  4. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    Article  CAS  Google Scholar 

  5. Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  Google Scholar 

  6. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  Google Scholar 

  7. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  Google Scholar 

  8. Sun, J.C., Williams, M.A. & Bevan, M.J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5, 927–933 (2004).

    Article  CAS  Google Scholar 

  9. Ernst, B., Lee, D.-S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  10. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    Article  CAS  Google Scholar 

  11. Cho, B.K., Rao, V.P., Ge, Q., Eisen, H.N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    Article  CAS  Google Scholar 

  12. Goldrath, A.W., Luckey, C.J., Park, R., Benoist, C. & Mathis, D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc. Natl. Acad. Sci. USA 101, 16885–16890 (2004).

    Article  CAS  Google Scholar 

  13. Stockinger, B., Kassiotis, G. & Bourgeois, C. Homeostasis and T cell regulation. Curr. Opin. Immunol. 16, 775–779 (2004).

    Article  CAS  Google Scholar 

  14. Marleau, A.M. & Sarvetnick, N. T cell homeostasis in tolerance and immunity. J. Leukoc. Biol. 78, 575–584 (2005).

    Article  CAS  Google Scholar 

  15. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nat. Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  16. Almeida, A.R., Rocha, B., Freitas, A.A. & Tanchot, C. Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin. Immunol. 17, 239–249 (2005).

    Article  CAS  Google Scholar 

  17. Prlic, M., Blazar, B.R., Khoruts, A., Zell, T. & Jameson, S.C. Homeostatic expansion occurs independently of costimulatory signals. J. Immunol. 167, 5664–5668 (2001).

    Article  CAS  Google Scholar 

  18. Hagen, K.A. et al. A role for CD28 in lymphopenia-induced proliferation of CD4 T cells. J. Immunol. 173, 3909–3915 (2004).

    Article  CAS  Google Scholar 

  19. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  20. Hu, H.-M., Poehlein, C.H., Urba, W.J. & Fox, B.A. Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 62, 3914–3919 (2002).

    CAS  Google Scholar 

  21. Dummer, W. et al. T cell homeostatic proliferation elicits effective anti-tumor autoimmunity. J. Clin. Invest. 110, 185–192 (2002).

    Article  CAS  Google Scholar 

  22. Wrzesinski, C. & Restifo, N.P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr. Opin. Immunol. 17, 195–201 (2005).

    Article  CAS  Google Scholar 

  23. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  24. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  25. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  26. Kieper, W.C. & Jameson, S.C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl. Acad. Sci. USA 96, 13306–13311 (1999).

    Article  CAS  Google Scholar 

  27. Goldrath, A.W., Bogatzki, L.Y. & Bevan, M.J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  Google Scholar 

  28. Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol. 165, 1733–1737 (2000).

    Article  CAS  Google Scholar 

  29. Kieper, W.C., Prlic, M., Schmidt, C.S., Mescher, M.F. & Jameson, S.C. IL-12 enhances CD8 T cell homeostatic expansion. J. Immunol. 166, 5515–5521 (2001).

    Article  CAS  Google Scholar 

  30. Oehen, S. & Brduscha-Riem, K. Naive cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: a pitfall for T cell memory studies? Eur. J. Immunol. 29, 608–614 (1999).

    Article  CAS  Google Scholar 

  31. Tanchot, C., Le Campion, A., Leaument, S., Dautigny, N. & Lucas, B. Naive CD4+ lymphocytes convert to anergic or memory-like cells in T cell-deprived recipients. Eur. J. Immunol. 31, 2256–2265 (2001).

    Article  CAS  Google Scholar 

  32. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  33. Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  Google Scholar 

  34. Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

    Article  CAS  Google Scholar 

  35. Berg, R.E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003).

    Article  CAS  Google Scholar 

  36. Grusby, M.J., Johnson, R.S., Papaioannou, V.E. & Glimcher, L.H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991).

    Article  CAS  Google Scholar 

  37. Di Pietro, R. & Zauli, G. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J. Cell. Physiol. 201, 331–340 (2004).

    Article  CAS  Google Scholar 

  38. Diehl, G.E. et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21, 877–889 (2004).

    Article  CAS  Google Scholar 

  39. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  40. Zheng, S.J., Jiang, J., Shen, H. & Chen, Y.H. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J. Immunol. 173, 5652–5658 (2004).

    Article  CAS  Google Scholar 

  41. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  42. Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol. 168, 1356–1361 (2002).

    Article  CAS  Google Scholar 

  43. Bishop, D.K. & Hinrichs, D.J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol. 139, 2005–2009 (1987).

    CAS  Google Scholar 

  44. Daniels, M.A. & Jameson, S.C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 191, 335–346 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Griffith for providing TRAIL-deficient mice; and K. Hogquist, M. Jenkins, M. Mescher and members of the Jamequist lab for input. Supported by the National Institutes of Health (S.C.J. and S.P.S.), the Centers for Disease Control (S.C.J.), the American Cancer Society (S.P.S.), the National Cancer Institute (T32 CA009138 to S.E.H.), the American Cancer Society (S.E.H.) and the Irvington Institute (M.C.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C Jameson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Experimental scheme. (PDF 314 kb)

Supplementary Fig. 2

Protection against LM-OVA by memory OT-I T cells. (PDF 202 kb)

Supplementary Fig. 3

Functional comparison of HP-memory and true memory OT-I T cells. (PDF 782 kb)

Supplementary Fig. 4

HP-memory T cells derived from Tcra−/− hosts do not provide protection against LM-OVA challenge. (PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, S., Wolkers, M., Schoenberger, S. et al. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7, 475–481 (2006). https://doi.org/10.1038/ni1326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing