Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early hematopoietic lineage restrictions directed by Ikaros

Abstract

Ikaros is expressed in early hematopoietic progenitors and is required for lymphoid differentiation. In the absence of Ikaros, there is a lack of markers defining fate restriction along lympho-myeloid pathways, but it is unclear whether formation of specific progenitors or expression of their markers is affected. Here we use a reporter based on Ikaros regulatory elements to separate early progenitors in wild-type and Ikaros-null mice. We found previously undetected Ikaros-null lympho-myeloid progenitors lacking the receptor tyrosine kinase Flt3 that were capable of myeloid but not lymphoid differentiation. In contrast, lack of Ikaros in the common myeloid progenitor resulted in increased formation of erythro-megakaryocytes at the expense of myeloid progenitors. Using this approach, we identify previously unknown pivotal functions for Ikaros in distinct fate 'decisions' in the early hematopoietic hierarchy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular and functional subdivision of the bone marrow HSC compartment with the Ikaros reporter.
Figure 2: Molecular and functional subcategorization of erythro-myeloid progenitors by the Ikaros reporter.
Figure 3: Molecular and functional subcategorization of Ikaros-null LSK cells with the Ikaros reporter.
Figure 4: Clonal analysis of wild-type and Ikaros-null LMPPs.
Figure 5: Molecular and functional analysis of Ikaros-null erythro-myeloid progenitors.

Similar content being viewed by others

References

  1. Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    Article  CAS  Google Scholar 

  2. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  Google Scholar 

  3. Lemischka, I.R. Clonal, in vivo behavior of the totipotent hematopoietic stem cell. Semin. Immunol. 3, 349–355 (1991).

    CAS  PubMed  Google Scholar 

  4. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  5. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  6. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  7. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  8. Weissman, I.L., Anderson, D.J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001).

    Article  CAS  Google Scholar 

  9. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  Google Scholar 

  10. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  Google Scholar 

  11. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  Google Scholar 

  12. Yang, L. et al. Identification of Lin Sca1+c-kit+CD34+Flt3 short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005).

    Article  CAS  Google Scholar 

  13. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  Google Scholar 

  14. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  Google Scholar 

  15. Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Article  CAS  Google Scholar 

  16. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  Google Scholar 

  17. Lessard, J., Faubert, A. & Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23, 7199–7209 (2004).

    Article  CAS  Google Scholar 

  18. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  Google Scholar 

  19. Rothenberg, E.V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol. 23, 601–649 (2005).

    Article  CAS  Google Scholar 

  20. Friedman, A.D. Transcriptional regulation of granulocyte and monocyte development. Oncogene 21, 3377–3390 (2002).

    Article  CAS  Google Scholar 

  21. Cantor, A.B. & Orkin, S.H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376 (2002).

    Article  CAS  Google Scholar 

  22. Georgopoulos, K., Moore, D.D. & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812 (1992).

    Article  CAS  Google Scholar 

  23. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  24. Wang, J.H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  Google Scholar 

  25. Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299 (1995).

    Article  CAS  Google Scholar 

  26. Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123 (1994).

    Article  CAS  Google Scholar 

  27. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999).

    Article  CAS  Google Scholar 

  28. Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161 (1995).

    Article  CAS  Google Scholar 

  29. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  Google Scholar 

  30. Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

    Article  CAS  Google Scholar 

  31. O'Neill, D.W. et al. An Ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol. 20, 7572–7582 (2000).

    Article  CAS  Google Scholar 

  32. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  Google Scholar 

  33. Kaufmann, C. et al. A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. EMBO J. 22, 2211–2223 (2003).

    Article  CAS  Google Scholar 

  34. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002).

    Article  CAS  Google Scholar 

  35. Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383–389 (2003).

    Article  CAS  Google Scholar 

  36. Metcalf, D., Johnson, G.R. & Mandel, T.E. Colony formation in agar by multipotential hemopoietic cells. J. Cell. Physiol. 98, 401–420 (1979).

    Article  CAS  Google Scholar 

  37. Nakahata, T. & Ogawa, M. Clonal origin of murine hemopoietic colonies with apparent restriction to granuclocyte-macrophage-megakaryocyte (GMM) differentiation. J. Cell. Physiol. 111, 239–246 (1982).

    Article  CAS  Google Scholar 

  38. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  39. Phillips, R.L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    Article  CAS  Google Scholar 

  40. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  Google Scholar 

  41. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  Google Scholar 

  42. Terszowski, G. et al. Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood 105, 1937–1945 (2005).

    Article  CAS  Google Scholar 

  43. Lopez, R.A., Schoetz, S., DeAngelis, K., O'Neill, D. & Bank, A. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc. Natl. Acad. Sci. USA 99, 602–607 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Yetz-Aldape for cell sorting; R. Czyzewski for mouse husbandry; X. Qi for technical support; and B.A. Morgan and the Georgopoulos laboratory for critical reading of the manuscript. Supported by the National Institutes of Health (5R37 R01 AI33062 to K.G. and 5T32 AI07529 to S.Y.N.), the Human Frontier Science Program (T.Y.) and the Transplantation Biology Research Center at Massachusetts General Hospital (S.Y.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Georgopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Distribution of the Ikaros-GFP reporter in the wild-type (WT) and Ikaros-null (Null) LSK and LK compartments. (PDF 69 kb)

Supplementary Fig. 2

Post-sort purity of the LK-GFPhi population. (PDF 655 kb)

Supplementary Fig. 3

Kinetics of T and B cell development from wild-type Ikaros-GFP LSK populations. (PDF 536 kb)

Supplementary Fig. 4

Analysis of lineage—Ikaros-GFP subsets for expression of CD34, and CD16/32 and Flt3 on various genetic backgrounds. (PDF 562 kb)

Supplementary Fig. 5

Cell fate decisions in the early hematopoietic hierarchy and their regulation by Ikaros. (PDF 334 kb)

Supplementary Table 1

Limiting dilution analysis of T cell differentiation from wild-type and Ikaros-null LSK cells. (PDF 20 kb)

Supplementary Table 2

Primers and PCR conditions used to examine lineage-specific genes expression in LK and LSK populations (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Yao-Ming Ng, S., Zuniga-Pflucker, J. et al. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 7, 382–391 (2006). https://doi.org/10.1038/ni1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing