Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus

Abstract

Commitment of hematopoietic progenitors to the T cell lineage requires the integration of multiple signaling pathways. Evidence has suggested involvement of hedgehog (Hh) signaling in T cell differentiation through its signal transducer smoothened (Smo). However, the precise function of the Hh pathway remains controversial, mainly because T cell–specific in vivo genetic models have not been used. Using pre–T cell–specific, mature T cell–specific and poly(I)·poly(C)-inducible deletions of Smo and antagonists of Smo signaling, we report here that Hh is an essential positive regulator of T cell progenitor differentiation. Furthermore, we localize Hh function to a stage preceding pre–T cell receptor signaling, connect Smo signaling to the activity of the Gli1 and Gli2 transcription factors and demonstrate that Hh affects regulators of thymocyte survival and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Hh pathway elements in the thymus.
Figure 2: Efficient Smo deletion and Hh inhibition in the thymi of Smo−/floxLck-Cre+ mice.
Figure 3: Lck-Cre–mediated Smo deletion affects T cell differentiation.
Figure 4: T cell progenitors cannot differentiate in the absence of Hh signaling.
Figure 5: Mx1-Cre–induced Smo deletion affects thymic development.
Figure 6: Smo deficiency affects progenitor homeostasis and the expression of regulators of cell cycle and apoptosis.
Figure 7: Smo deficiency does not affect pre-TCR assembly or function.
Figure 8: 'Late', CD4-Cre–mediated Smo deletion fails to hinder T cell differentiation.

Similar content being viewed by others

References

  1. Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Article  CAS  Google Scholar 

  2. von Boehmer, H., Aifantis, I., Azogui, O., Saint-Ruf, C. & Grassi, F. The impact of pre-T-cell receptor signals on gene expression in developing T cells. Cold Spring Harb. Symp. Quant. Biol. 64, 283–289 (1999).

    Article  CAS  Google Scholar 

  3. Aifantis, I., Buer, J., von Boehmer, H. & Azogui, O. Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor β locus. Immunity 7, 601–607 (1997).

    Article  CAS  Google Scholar 

  4. Aifantis, I. et al. On the role of the pre-T cell receptor in αβ versus γδ T lineage commitment. Immunity 9, 649–655 (1998).

    Article  CAS  Google Scholar 

  5. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  6. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  7. Maillard, I., Adler, S.H. & Pear, W.S. Notch and the immune system. Immunity 19, 781–791 (2003).

    Article  CAS  Google Scholar 

  8. Okamura, R.M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  Google Scholar 

  9. Staal, F.J. & Clevers, H.C. Wnt signaling in the thymus. Curr. Opin. Immunol. 15, 204–208 (2003).

    Article  CAS  Google Scholar 

  10. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    Article  CAS  Google Scholar 

  11. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–869 (2001).

    Article  CAS  Google Scholar 

  12. St Johnston, D. & Nusslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article  CAS  Google Scholar 

  13. Voas, M.G. & Rebay, I. Signal integration during development: insights from the Drosophila eye. Dev. Dyn. 229, 162–175 (2004).

    Article  CAS  Google Scholar 

  14. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  Google Scholar 

  15. Hammerschmidt, M., Brook, A. & McMahon, A.P. The world according to hedgehog. Trends Genet. 13, 14–21 (1997).

    Article  CAS  Google Scholar 

  16. McMahon, A.P. More surprises in the Hedgehog signaling pathway. Cell 100, 185–188 (2000).

    Article  CAS  Google Scholar 

  17. Outram, S.V., Varas, A., Pepicelli, C.V. & Crompton, T. Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Immunity 13, 187–197 (2000).

    Article  CAS  Google Scholar 

  18. Shah, D.K. et al. Reduced thymocyte development in sonic hedgehog knockout embryos. J. Immunol. 172, 2296–2306 (2004).

    Article  CAS  Google Scholar 

  19. Gutierrez-Frias, C. et al. Sonic hedgehog regulates early human thymocyte differentiation by counteracting the IL-7-induced development of CD34+ precursor cells. J. Immunol. 173, 5046–5053 (2004).

    Article  CAS  Google Scholar 

  20. Sacedon, R. et al. Expression of hedgehog proteins in the human thymus. J. Histochem. Cytochem. 51, 1557–1566 (2003).

    Article  CAS  Google Scholar 

  21. Zhang, X.M., Ramalho-Santos, M. & McMahon, A.P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105, 781–792 (2001).

    Article  CAS  Google Scholar 

  22. Long, F., Zhang, X.M., Karp, S., Yang, Y. & McMahon, A.P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001).

    CAS  PubMed  Google Scholar 

  23. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S.H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    Article  CAS  Google Scholar 

  24. Zuniga-Pflucker, J.C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    Article  CAS  Google Scholar 

  25. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  Google Scholar 

  26. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  27. Wolfer, A. et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nat. Immunol. 2, 235–241 (2001).

    Article  CAS  Google Scholar 

  28. Corcoran, R.B. & Scott, M.P. A mouse model for medulloblastoma and basal cell nevus syndrome. J. Neurooncol. 53, 307–318 (2001).

    Article  CAS  Google Scholar 

  29. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    Article  CAS  Google Scholar 

  30. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer 2, 361–372 (2002).

    Article  CAS  Google Scholar 

  31. Zhang, Y. et al. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development 127, 1431–1443 (2000).

    CAS  PubMed  Google Scholar 

  32. Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  Google Scholar 

  33. Bleul, C.C. & Boehm, T. BMP signaling is required for normal thymus development. J. Immunol. 175, 5213–5221 (2005).

    Article  CAS  Google Scholar 

  34. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005).

    Article  CAS  Google Scholar 

  35. Lowrey, J.A. et al. Sonic hedgehog promotes cell cycle progression in activated peripheral CD4+ T lymphocytes. J. Immunol. 169, 1869–1875 (2002).

    Article  CAS  Google Scholar 

  36. Stewart, G.A. et al. Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J. Immunol. 169, 5451–5457 (2002).

    Article  CAS  Google Scholar 

  37. Sacedon, R. et al. Sonic hedgehog is produced by follicular dendritic cells and protects germinal center B cells from apoptosis. J. Immunol. 174, 1456–1461 (2005).

    Article  CAS  Google Scholar 

  38. Bale, A.E. Hedgehog signaling and human disease. Annu. Rev. Genomics Hum. Genet. 3, 47–65 (2002).

    Article  CAS  Google Scholar 

  39. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  40. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    Article  CAS  Google Scholar 

  41. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nat. Immunol. 3, 483–488 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. McMahon for Smoflox mice; J. McMahon for technical support; H. von Boehmer for support; H. Petrie, H. Nakase, W. Du, J. Pogoriler, J.-C. Zuniga-Pflucker, R. Wechsler-Reya, M. Allegre, F. Gounari, N. Liu and P. Ashton-Rickard for mice and materials; and B. Kee, J. Crispino and A. Wilson for discussions and critical review of the project. Supported by the Cancer Research Institute, the 'V' Foundation for Cancer Research, the Sidney Kimmel Foundation for Cancer Research (I.A.), the University of Chicago Medical Scientist Training Program (S.G.), the University of Chicago Committee on Cancer Biology (M.M.) and the Leukemia Research Foundation (M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Shh expression in the adult thymus. (PDF 2569 kb)

Supplementary Fig. 2

Pre-T cell specific Smo deletion. (PDF 213 kb)

Supplementary Fig. 3

Effect of Smo deletion on thymic B and TCRγδ cell populations. (PDF 199 kb)

Supplementary Fig. 4

In vitro inhibition of Smo signaling affects development of (DN2) pro-T cells. (PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andaloussi, A., Graves, S., Meng, F. et al. Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat Immunol 7, 418–426 (2006). https://doi.org/10.1038/ni1313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing