Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages


CD4+ T cells producing interleukin 17 (IL-17) are associated with autoimmunity, although the precise mechanisms that control their development are undefined. Here we present data that challenge the idea of a shared developmental pathway with T helper type 1 (TH1) or TH2 lineages and instead favor the idea of a distinct effector lineage we call 'TH-17'. The development of TH-17 cells from naive precursor cells was potently inhibited by interferon-γ (IFN-γ) and IL-4, whereas committed TH-17 cells were resistant to suppression by TH1 or TH2 cytokines. In the absence of IFN-γ and IL-4, IL-23 induced naive precursor cells to differentiate into TH-17 cells independently of the transcription factors STAT1, T-bet, STAT4 and STAT6. These findings provide a basis for understanding how inhibition of IFN-γ signaling enhances development of pathogenic TH-17 effector cells that can exacerbate autoimmunity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TH1 and TH2 cells are poorly responsive to IL-23.
Figure 2: IFN-γ inhibits the development of IL-17-producing effector CD4+ T cells.
Figure 3: Differentiation of IL-17-producing effector cells from naive CD4+ T cells.
Figure 4: Both type I and type II interferons inhibit the development of IL-17-producing effector cells.
Figure 5: The development of IL-17 effector cells is independent of STAT1 and T-bet.
Figure 6: Differential expression of IL-12R and IL-23R by TH1- and TH-17-polarized effector populations.
Figure 7: IL-4 suppresses TH-17 cell development independently of IFN-γ.
Figure 8: STAT4 and STAT6 signaling are dispensable for TH-17 cell development.
Figure 9: Committed TH-17 effector cells have a stable phenotype.


  1. 1

    Mosmann, T. & Coffman, R. Th1 and Th2 cells: Different patterns of lymphokine secretion leads to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Bottomly, K. A functional dichotomy in CD4+ T lymphocytes. Immunol. Today 9, 268–277 (1988).

    CAS  Article  Google Scholar 

  3. 3

    Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Robinson, D.S. & O'Garra, A. Further checkpoints in Th1 development. Immunity 16, 755–758 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Szabo, S.J., Sullivan, B.M., Peng, S.L. & Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  Google Scholar 

  11. 11

    Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Gran, B. et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol. 169, 7104–7110 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Bettelli, E. & Kuchroo, V.K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med. 201, 169–171 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Langrish, C.L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 100, 15047–15052 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R.A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-Bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Ferber, I.A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  Google Scholar 

  24. 24

    Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  Google Scholar 

  25. 25

    Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Lighvani, A.A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA 98, 15137–15142 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Cho, J.Y., Grigura, V., Murphy, T.L. & Murphy, K. Identification of cooperative monomeric Brachyury sites conferring T-bet responsiveness to the proximal IFN-gamma promoter. Int. Immunol. 15, 1149–1160 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Berenson, L.S., Ota, N. & Murphy, K.M. Issues in T-helper 1 development–resolved and unresolved. Immunol. Rev. 202, 157–174 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Ota, N., Brett, T.J., Murphy, T.L., Fremont, D.H. & Murphy, K.M. N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat. Immunol. 5, 208–215 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Chitnis, T. et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108, 739–747 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Lovett-Racke, A.E. et al. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719–731 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Ghilardi, N. et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol. 172, 2827–2833 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Happel, K.I. et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Smits, H.H. et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur. J. Immunol. 34, 1371–1380 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Berg, D.J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    CAS  Article  Google Scholar 

  46. 46

    Magram, J. et al. IL-12-deficient mice are defective in IFN-γ production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    CAS  Article  Google Scholar 

  49. 49

    Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    CAS  Article  Google Scholar 

  51. 51

    Kubo, T. et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J. Immunol. 173, 7249–7258 (2004).

    CAS  Article  Google Scholar 

Download references


We thank W. Ouyang and N. Ghilardi, and members of the Weaver laboratory for comments and suggestions. Supported by the National Institutes of Health (AI035783, AI057956 and DK64400 to C.T.W.), Sankyo (C.T.W.), Howard Hughes Medical Institute (K.M.M.) and the National Multiple Sclerosis Society (L.E.H.).

Author information



Corresponding author

Correspondence to Casey T Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

IL-23 does not promote IFN-γ production by CD4+ T cells. (PDF 449 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harrington, L., Hatton, R., Mangan, P. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6, 1123–1132 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing