Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Are innate immune signaling pathways in plants and animals conserved?

Abstract

Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Extracellular and intracellular PRRs in plants and animals.
Figure 2: Signaling pathways downstream of PRRs in mammals, insects, nematodes and plants.

References

  1. Medzhitov, R. & Janeway, C., Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. Medzhitov, R. & Janeway, C.A., Jr. An ancient system of host defense. Curr. Opin. Immunol. 10, 12–15 (1998).

    CAS  Article  PubMed  Google Scholar 

  3. Gravato-Nobre, M.J. & Hodgkin, J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7, 741–751 (2005).

    CAS  Article  PubMed  Google Scholar 

  4. Kim, D.H. & Ausubel, F.M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4–10 (2005).

    CAS  Article  PubMed  Google Scholar 

  5. Kurz, C.L. & Ewbank, J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4, 380–390 (2003).

    CAS  Article  PubMed  Google Scholar 

  6. Millet, A.C. & Ewbank, J.J. Immunity in Caenorhabditis elegans. Curr. Opin. Immunol. 16, 4–9 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. Schulenburg, H., Kurz, C.L. & Ewbank, J.J. Evolution of the innate immune system: the worm perspective. Immunol. Rev. 198, 36–58 (2004).

    CAS  Article  PubMed  Google Scholar 

  8. Beutler, B. & Rehli, M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270, 1–21 (2002).

    CAS  PubMed  Google Scholar 

  9. Brennan, C.A. & Anderson, K.V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457–483 (2004).

    CAS  Article  PubMed  Google Scholar 

  10. Hoffmann, J.A. & Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121–126 (2002).

    CAS  Article  PubMed  Google Scholar 

  11. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. Medzhitov, R. & Janeway, C., Jr. The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452–456 (2000).

    CAS  Article  PubMed  Google Scholar 

  13. Royet, J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063–1075 (2004).

    CAS  Article  PubMed  Google Scholar 

  14. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    CAS  Article  PubMed  Google Scholar 

  15. Anderson, K.V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 (2000).

    CAS  Article  PubMed  Google Scholar 

  16. Belvin, M.P. & Anderson, K.V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 (1996).

    CAS  Article  PubMed  Google Scholar 

  17. Gay, N.J. & Keith, F.J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    CAS  Article  PubMed  Google Scholar 

  18. Sun, S.C., Lindstrom, I., Lee, J.Y. & Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196, 247–254 (1991).

    CAS  Article  PubMed  Google Scholar 

  19. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  Article  PubMed  Google Scholar 

  20. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    CAS  Article  PubMed  Google Scholar 

  21. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  Article  PubMed  Google Scholar 

  22. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    CAS  Article  PubMed  Google Scholar 

  23. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    CAS  Article  PubMed  Google Scholar 

  24. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. Steiner, H. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198, 83–96 (2004).

    CAS  Article  PubMed  Google Scholar 

  26. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    CAS  Article  PubMed  Google Scholar 

  27. Athman, R. & Philpott, D. Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol. 7, 25–32 (2004).

    CAS  Article  PubMed  Google Scholar 

  28. Girardin, S.E. & Philpott, D.J. Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol. 34, 1777–1782 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. Philpott, D.J. & Girardin, S.E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099–1108 (2004).

    CAS  Article  PubMed  Google Scholar 

  30. Viala, J., Sansonetti, P. & Philpott, D.J. Nods and 'intracellular' innate immunity. C. R. Biol. 327, 551–555 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. Ting, J.P. & Davis, B.K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387–414 (2005).

    CAS  Article  PubMed  Google Scholar 

  32. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    CAS  Article  PubMed  Google Scholar 

  33. Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    CAS  Article  PubMed  Google Scholar 

  34. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  Article  PubMed  Google Scholar 

  35. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104 (2003).

    CAS  Article  PubMed  Google Scholar 

  36. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    CAS  Article  PubMed  Google Scholar 

  37. Nurnberger, T., Brunner, F., Kemmerling, B. & Piater, L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198, 249–266 (2004).

    Article  PubMed  Google Scholar 

  38. Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002).

    CAS  Article  PubMed  Google Scholar 

  39. Felix, G., Duran, J.D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

    CAS  Article  PubMed  Google Scholar 

  40. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 (1999).

    CAS  Article  PubMed  Google Scholar 

  42. Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    CAS  Article  PubMed  Google Scholar 

  44. Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7, 251–256 (2002).

    CAS  Article  PubMed  Google Scholar 

  45. Shiu, S.H. & Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98, 10763–10768 (2001).

    CAS  Article  PubMed  Google Scholar 

  46. Shiu, S.H. & Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543 (2003).

    CAS  Article  PubMed  Google Scholar 

  47. Donnelly, M.A. & Steiner, T.S. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456–40461 (2002).

    CAS  Article  PubMed  Google Scholar 

  48. Holt, B.F., III, Hubert, D.A. & Dangl, J.L. Resistance gene signaling in plants–complex similarities to animal innate immunity. Curr. Opin. Immunol. 15, 20–25 (2003).

    CAS  Article  PubMed  Google Scholar 

  49. Nimchuk, Z., Eulgem, T., Holt, B.F., III & Dangl, J.L. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579–609 (2003).

    CAS  Article  PubMed  Google Scholar 

  50. Meyers, B.C., Kozik, A., Griego, A., Kuang, H. & Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou, T. et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271, 402–415 (2004).

    CAS  Article  PubMed  Google Scholar 

  52. Bais, H.P., Prithiviraj, B., Jha, A.K., Ausubel, F.M. & Vivanco, J.M. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434, 217–221 (2005).

    CAS  Article  PubMed  Google Scholar 

  53. Hauck, P., Thilmony, R. & He, S.Y. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100, 8577–8582 (2003).

    CAS  Article  PubMed  Google Scholar 

  54. He, P. et al. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J. 37, 589–602 (2004).

    CAS  Article  PubMed  Google Scholar 

  55. Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M.B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50, 377–389 (2003).

    CAS  Article  PubMed  Google Scholar 

  56. Kim, M.G. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759 (2005).

    CAS  Article  PubMed  Google Scholar 

  57. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    CAS  Article  PubMed  Google Scholar 

  58. Zhao, Y. et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J. 36, 485–499 (2003).

    CAS  Article  PubMed  Google Scholar 

  59. Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001).

    CAS  Article  PubMed  Google Scholar 

  60. Mallo, G.V. et al. Inducible antibacterial defense system in C. elegans. Curr. Biol. 12, 1209–1214 (2002).

    CAS  Article  PubMed  Google Scholar 

  61. Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494 (2004).

    CAS  Article  PubMed  Google Scholar 

  62. Kim, D.H. et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623–626 (2002).

    CAS  Article  PubMed  Google Scholar 

  63. Kim, D.H. et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc. Natl. Acad. Sci. USA 101, 10990–10994 (2004).

    CAS  Article  PubMed  Google Scholar 

  64. Liberati, N.T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 101, 6593–6598 (2004).

    CAS  Article  PubMed  Google Scholar 

  65. Matsuzawa, A. et al. ROS-dependent activation of the TRAF6–ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 6, 587–592 (2005).

    CAS  Article  PubMed  Google Scholar 

  66. Mochida, Y. et al. ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6–TAK1 interaction. J. Biol. Chem. 275, 32747–32752 (2000).

    CAS  Article  PubMed  Google Scholar 

  67. Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis–2001 status. Curr. Opin. Plant Biol. 4, 301–308 (2001).

    CAS  Article  PubMed  Google Scholar 

  68. Chern, M., Canlas, P.E., Fitzgerald, H.A. & Ronald, P.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J. 43, 335–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Durrant, W.E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    CAS  Article  PubMed  Google Scholar 

  70. Pieterse, C.M. & Van Loon, L.C. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7, 456–464 (2004).

    CAS  Article  PubMed  Google Scholar 

  71. Keller, T. et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255–266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Torres, M.A. et al. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365–370 (1998).

    CAS  Article  PubMed  Google Scholar 

  73. Torres, M.A., Dangl, J.L. & Jones, J.D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).

    CAS  Article  PubMed  Google Scholar 

  74. Song, W.Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995).

    CAS  Article  PubMed  Google Scholar 

  75. Burdman, S., Shen, Y., Lee, S.W., Xue, Q. & Ronald, P. RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol. Plant Microbe Interact. 17, 602–612 (2004).

    CAS  Article  PubMed  Google Scholar 

  76. da Silva, F.G. et al. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant Microbe Interact. 17, 593–601 (2004).

    CAS  Article  PubMed  Google Scholar 

  77. Shen, Y., Sharma, P., da Silva, F.G. & Ronald, P. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol. 44, 37–48 (2002).

    CAS  Article  PubMed  Google Scholar 

  78. Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    CAS  Article  PubMed  Google Scholar 

  79. Axtell, M.J. & Staskawicz, B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377 (2003).

    CAS  Article  PubMed  Google Scholar 

  80. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. & Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    CAS  Article  PubMed  Google Scholar 

  81. Mackey, D., Holt, B.F., Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    CAS  Article  PubMed  Google Scholar 

  82. Friedman, R. & Hughes, A.L. Molecular evolution of the NF-κB signaling system. Immunogenetics 53, 964–974 (2002).

    CAS  Article  PubMed  Google Scholar 

  83. Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51, 92–98 (2000).

    CAS  Article  PubMed  Google Scholar 

  84. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    CAS  Article  PubMed  Google Scholar 

  85. Nurnberger, T. & Volker, L. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant Pathol. 6, 335–345 (2005).

    Article  PubMed  Google Scholar 

  86. Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    CAS  Article  PubMed  Google Scholar 

  87. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    CAS  Article  PubMed  Google Scholar 

  88. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    CAS  Article  PubMed  Google Scholar 

  89. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    CAS  Article  PubMed  Google Scholar 

  90. Pan, H. et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767–772 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank C. Dardick, W. Dietrich, J. Dangl, J. Ewbank, J. Jones, T. Nurnberger, P. Ronald, P. Schulze-Lefert and J. Sheen for comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ausubel, F. Are innate immune signaling pathways in plants and animals conserved?. Nat Immunol 6, 973–979 (2005). https://doi.org/10.1038/ni1253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1253

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing