Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemokine receptor CXCR4–dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells

Abstract

Regulation of the availability of chemokine SDF-1 (CXCL12) in bone marrow is still not fully understood. Here we describe a unique function for the chemokine receptor CXCR4 expressed on bone marrow endothelial cells, which efficiently internalize circulating SDF-1, resulting in its translocation into the bone marrow. Translocated SDF-1 increased the homing of transplanted human CD34+ hematopoietic progenitors to the bone marrow. The chemokine transporter function of CXCR4 was a characteristic of endothelial and stromal cells but not of hematopoietic cells. Thus, chemokine translocation across the blood–bone marrow barrier allows effective transfer of functional SDF-1 from the periphery to the stem cell niche in the bone marrow during both homeostasis and 'alarm' situations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SDF-1 and CXCR4 expression and presentation by bone marrow sinusoids.
Figure 2: CXCR4-dependent translocation of circulating bSDF-1 into the bone marrow.
Figure 3: SDF-1 internalization by human and mouse bone marrow endothelium is CXCR4 dependent.
Figure 4: Transcytosis of SDF-1 by endothelial cells via clathrin-coated pits.
Figure 5: Resecretion of functional bSDF-1 by BMECs.
Figure 6: SDF-1 internalization is exclusive to stromal cells, not to hematopoietic cells.

Similar content being viewed by others

References

  1. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  Google Scholar 

  2. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    Article  CAS  Google Scholar 

  3. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  Google Scholar 

  4. Peled, A. et al. Dependence of human stem cell engrafment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  Google Scholar 

  5. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  Google Scholar 

  6. Sun, Y.X. et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J. Cell. Biochem. 89, 462–473 (2003).

    Article  CAS  Google Scholar 

  7. Imai, K. et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br. J. Haematol. 106, 905–911 (1999).

    Article  CAS  Google Scholar 

  8. Peled, A. et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest. 104, 1199–1211 (1999).

    Article  CAS  Google Scholar 

  9. Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  Google Scholar 

  10. Kortesidis, A. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793–3801 (2005).

    Article  CAS  Google Scholar 

  11. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engrafment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

    CAS  Google Scholar 

  12. Mazo, I.B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005).

    Article  CAS  Google Scholar 

  13. Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  Google Scholar 

  14. Kollet, O. et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169 (2003).

    Article  CAS  Google Scholar 

  15. De La Luz Sierra, M. et al. Differential processing of stromal-derived factor-1α and stromal-derived factor-1β explains functional diversity. Blood 103, 2452–2459 (2004).

    Article  CAS  Google Scholar 

  16. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  Google Scholar 

  17. Levesque, J.P., Hendy, J., Takamatsu, Y., Simmons, P.J. & Bendall, L.J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest. 111, 187–196 (2003).

    Article  CAS  Google Scholar 

  18. Hattori, K. et al. Plasma elevation of stromal-cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    Article  CAS  Google Scholar 

  19. Shen, H. et al. CXCR-4 desensitization is associated with tissue localization of hematopoietic progenitor cells. J. Immunol. 166, 5027–5033 (2001).

    Article  CAS  Google Scholar 

  20. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  Google Scholar 

  21. Horuk, R. et al. The duffy antigen receptor for chemokines: structural analysis and expression in the brain. J. Leukoc. Biol. 59, 29–38 (1996).

    Article  CAS  Google Scholar 

  22. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  Google Scholar 

  23. Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol. 6, 403–411 (2005).

    Article  CAS  Google Scholar 

  24. Fra, A.M. et al. Scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol. 170, 2279–2282 (2003).

    Article  CAS  Google Scholar 

  25. Chaudhuri, A. et al. Detection of Duffy antigen in the plasma membranes and caveolae of vascular endothelial and epithelial cells of nonerythroid organs. Blood 89, 701–712 (1997).

    CAS  Google Scholar 

  26. Amara, A. et al. Stromal cell-derived factor-1α associates with heparan sulfates through the first β-strand of the chemokine. J. Biol. Chem. 274, 23916–23925 (1999).

    Article  CAS  Google Scholar 

  27. Suzuki, G. et al. Loss of SDF-1 receptor expression during positive selection in the thymus. Int. Immunol. 10, 1049–1056 (1998).

    Article  CAS  Google Scholar 

  28. Signoret, N. et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J. Cell Biol. 139, 651–664 (1997).

    Article  CAS  Google Scholar 

  29. Minshall, R.D., Sessa, W.C., Stan, R.V., Anderson, R.G.W. & Malik, A.B. Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L1179–L1183 (2003).

    Article  CAS  Google Scholar 

  30. Rafii, S. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).

    CAS  Google Scholar 

  31. Chaussalet, M. et al. Homocysteine modulates the proteolytic potential of human vascular endothelial cells. Biochem. Biophys. Res. Commun. 316, 170–176 (2004).

    Article  CAS  Google Scholar 

  32. Netelenbos, T. et al. Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17, 175–184 (2003).

    Article  CAS  Google Scholar 

  33. Kollet, O. et al. Rapid and efficient homing of human CD34+CD38−/low CXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood 97, 3283–3291 (2001).

    Article  CAS  Google Scholar 

  34. Amara, A. et al. HIV coreceptor downregulation as antiviral principle: SDF-1 α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med. 186, 139–146 (1997).

    Article  CAS  Google Scholar 

  35. Stumm, R.K. et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J. Neurosci. 22, 5865–5878 (2002).

    Article  CAS  Google Scholar 

  36. Askari, A.T. et al. Effect of stromal-cell-derived-factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    Article  CAS  Google Scholar 

  37. Dzenko, K.A., Andjelkovic, A.V., Kuziel, W.A. & Pachter, J.S. The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J. Neurosci. 21, 9214–9223 (2001).

    Article  CAS  Google Scholar 

  38. Pablos, J.L. et al. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J. Immunol. 170, 2147–2152 (2003).

    Article  CAS  Google Scholar 

  39. Hitchon, C. et al. Hypoxia-induced production of stromal cell-derived factor 1(CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 46, 2587–2597 (2002).

    Article  CAS  Google Scholar 

  40. Salvucci, O. et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99, 2703–2711 (2002).

    Article  CAS  Google Scholar 

  41. Lambertsen, R.H. & Weiss, L. A model of intramedullary hematopoietic microenvironments based on stereologic study of the distribution of endocloned marrow colonies. Blood 63, 287–297 (1984).

    CAS  Google Scholar 

  42. Lord, B.I. The architecture of bone marrow cell populations. Int. J. Cell Cloning 8, 317–331 (1990).

    Article  CAS  Google Scholar 

  43. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  44. Kollet, O. et al. Osteoclasts are involved in stem cell mobilization: cleavage of SDF-1 by cathepsin K. Blood 104, 364A–364A.

  45. Sipkins, D.A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  Google Scholar 

  46. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  47. Mack, M. et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215–1224 (1998).

    Article  CAS  Google Scholar 

  48. Oynebraten, I., Bakke, O., Brandtzaeg, P., Johansen, F.E. & Haraldsen, G. Rapid chemokine secretion from endothelial cells originates from two distinct compartments. Blood 104, 314–320 (2004).

    Article  CAS  Google Scholar 

  49. Wolff, B., Burns, A.R., Middleton, J. & Rot, A. Endothelial cells “memory” of inflammatory stimulation: human venular endothelial cells store interleukin 8 in weibel-palade bodies. J. Exp. Med. 188, 1757–1762 (1998).

    Article  CAS  Google Scholar 

  50. Rafii, S. et al. isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).

    CAS  Google Scholar 

  51. Spiegel, A. et al. Unique SDF-1 induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103, 2900–2907 (2004).

    Article  CAS  Google Scholar 

  52. Song, L. & Pachter, S. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc. Res. 67, 78–89 (2004).

    Article  CAS  Google Scholar 

  53. Pelletier, A.J. et al. Presentation of chemokine SDF-1α by fibronectin mediates directed migration of T cells. Blood 96, 2682–2690 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Frisch and B. Lifschitz–Mercer (Sourasky Medical Center, Tel-Aviv, Israel) for providing human bone marrow specimens; and A. Globerson, D. Zipori, R. Alon and S. Berrih-Aknin for critical remarks and discussions. Supported by The Israel Science Foundation (794/04) and Ares-Serono Group and by the Edith Stein Professional Chair of Immunology (T.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvee Lapidot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, A., Goichberg, P., Shinder, V. et al. Chemokine receptor CXCR4–dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 6, 1038–1046 (2005). https://doi.org/10.1038/ni1251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing