Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism

This article has been updated


Notch signals are necessary for the functional outcomes of T cell receptor β-selection, including differentiation, proliferation and rescue from apoptosis. The mechanism underlying this requirement for T cell development is unknown. Here we show that Notch receptor and Delta-like 1 ligand interactions promoted the survival of CD4CD8 pre–T cells through the maintenance of cell size, glucose uptake and metabolism. Furthermore, the trophic effects of Notch signaling were mediated by the pathway of phosphatidylinositol-3-OH kinase and the kinase Akt, such that expression of active Atk overcame the requirement for Notch in β-selection. Collectively, our results demonstrate involvement of Notch receptor–ligand interactions in the regulation of cellular metabolism, thus enabling the autonomous signaling capacity of the pre–T cell receptor complex.

*Note: In the version of this article initially published online, in the fourth sentence of the abstract, the term "Atk" was a misspelling; this should be "Akt." In the fourth sentence of the second paragraph of the introduction, the name of the second kinase mentioned, "PI(3)K-dependent kinase 1," was incorrect; this should read "phosphoinositide-dependent kinase 1." These errors have been corrected for the HTML and print versions of the article.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Requirement for Notch receptor and Delta-like 1 ligand interaction for TCR β-selection and pre–T cell survival.
Figure 2: Rag2−/− DN3 cells undergo apoptosis after withdrawal of Notch receptor–ligand interaction.
Figure 3: Rag2−/− DN3 cells undergo death and atrophy despite continued Bcl-2 expression.
Figure 4: Notch signals maintain glucose metabolism in pre–T cells.
Figure 5: Decreased Akt phosphorylation in the absence of Notch–Delta-like 1 ligand interactions.
Figure 6: Active Akt can restore the viability, cellular atrophy and decreased glycolytic rate of DN3 cells in the absence of Notch signaling.
Figure 7: Expression of active Akt restores the DN-to-DP transition in the absence of Notch–Delta-like 1 interaction.

Change history

  • 14 August 2005

    appended aop PDF with corrigendum (will be corrected for print issue), and placed footnote in XML at abstract


  1. 1

    Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Livak, F., Tourigny, M., Schatz, D.G. & Petrie, H.T. Characterization of TCR gene rearrangements during adult murine T cell development. J. Immunol. 162, 2575–2580 (1999).

    CAS  PubMed  Google Scholar 

  3. 3

    Michie, A.M. & Zúñiga-Pflücker, J.C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Schmitt, T.M. & Zuniga-Pflucker, J.C. Thymus-derived signals regulate early T-cell development. Crit. Rev. Immunol. 25, 141–160 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Nicholson, K.M. & Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 14, 381–395 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Rathmell, J.C. et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol. 23, 7315–7328 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zúñiga-Pflücker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Schmitt, T.M. & Zúñiga-Pflücker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Zúñiga-Pflücker, J.C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    Article  Google Scholar 

  16. 16

    Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Deftos, M.L., He, Y.W., Ojala, E.W. & Bevan, M.J. Correlating notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Jehn, B.M., Bielke, W., Pear, W.S. & Osborne, B.A. Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  20. 20

    Sade, H., Krishna, S. & Sarin, A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J. Biol. Chem. 279, 2937–2944 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Penit, C., Lucas, B. & Vasseur, F. Cell expansion and growth arrest phases during the transition from precursor (CD48) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol. 154, 5103–5113 (1995).

    CAS  Google Scholar 

  22. 22

    Green, D.R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Belloc, F. et al. Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40, 151–160 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J. 19, 3337–3348 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Vander Heiden, M.G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Rathmell, J.C., Vander Heiden, M.G., Harris, M.H., Frauwirth, K.A. & Thompson, C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    CAS  Article  Google Scholar 

  29. 29

    von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7, 147–154 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Hagenbeek, T.J. et al. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J. Exp. Med. 200, 883–894 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Newton, K., Harris, A.W. & Strasser, A. FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–941 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Jiang, D., Lenardo, M.J. & Zúñiga-Pflücker, J.C. p53 prevents maturation to the CD4+CD8+ stage of thymocyte differentiation in the absence of T cell receptor rearrangement. J. Exp. Med. 183, 1923–1928 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Whetton, A.D., Bazill, G.W. & Dexter, T.M. Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J. 3, 409–413 (1984).

    CAS  Article  Google Scholar 

  35. 35

    Edinger, A.L. & Thompson, C.B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 13, 2276–2288 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Eagar, T.N. et al. Notch 1 signaling regulates peripheral T cell activation. Immunity 20, 407–415 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Kim, K., Lee, C.K., Sayers, T.J., Muegge, K. & Durum, S.K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol. 160, 5735–5741 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Yu, Q., Erman, B., Bhandoola, A., Sharrow, S.O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Frauwirth, K.A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Nie, L., Xu, M., Vladimirova, A. & Sun, X.H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Talora, C. et al. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep. 4, 1067–1072 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Engel, I. & Murre, C. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J. 23, 202–211 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Zweidler-McKay, P.A. & Pear, W.S. Notch and T cell malignancy. Semin. Cancer Biol. 14, 329–340 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Malstrom, S., Tili, E., Kappes, D., Ceci, J.D. & Tsichlis, P.N. Tumor induction by an Lck-MyrAkt transgene is delayed by mechanisms controlling the size of the thymus. Proc. Natl. Acad. Sci. USA 98, 14967–14972 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Bellavia, D. et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl. Acad. Sci. USA 99, 3788–3793 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194, 99–106 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Ashcroft, S.J., Weerasinghe, L.C., Bassett, J.M. & Randle, P.J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem. J. 126, 525–532 (1972).

    CAS  Article  Google Scholar 

Download references


We thank D.A. Vignali for the MIY retroviral vector; J. Maryanski for the MIG-TCRβ construct; W. Pear for the MigR retroviral vector; and G. Knowles for assistance in cell sorting. Supported by the Canadian Institutes of Health Research (Doctoral Research Award to M.C., and grant MOP 42387) and a Canada Research Chair in Developmental Immunology (J.C.Z.-P.).

Author information



Corresponding author

Correspondence to Juan Carlos Zúñiga-Pflücker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The majority of Rag2−/− DN3 cells in OP9-DL1 and OP9-control cultures are non-cycling. (PDF 3241 kb)

Supplementary Fig. 2

Bcl-2 expression partially rescues the decline in cellularity following withdrawal of Notch-Delta-like-1 interaction. (PDF 1094 kb)

Supplementary Fig. 3

PI3K signals are indispensable for Notch-mediated trophic effects. (PDF 2995 kb)

Supplementary Table 1

Gene-specific primers used in RT-PCR analysis. (PDF 45 kb)

Supplementary Methods (PDF 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciofani, M., Zúñiga-Pflücker, J. Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism. Nat Immunol 6, 881–888 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing