Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa

Abstract

One unresolved issue in gut immunity is how mucosal T lymphocytes are activated and which antigen-presenting cell (APC) is critical for the regulation of this process. We have identified a unique population of APCs that is exclusively localized in the lamina propria. These APCs constitutively expressed the costimulatory molecule CD70 and had antigen-presenting functions. After oral infection of mice with Listeria monocytogenes, proliferation and differentiation of antigen-specific T cells occurred in the gut mucosa in situ and blockade of CD70 costimulation abrogated the mucosal T cell proliferation and effector functions. Thus, a potent CD70-dependent stimulation via specialized tissue-specific APCs is required for the proliferation and differentiation of gut mucosal T cells after oral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Presence of a unique CD70+ cell population in the gut lamina propria.
Figure 2: Nonhematopoietic origin of CD70+ cells.
Figure 3: Antigen presenting function of CD70+ APCs.
Figure 4: Proliferation and differentiation of T cells occurs in the intestinal mucosa after oral L. monocytogenes infection.
Figure 5: Lta−/− mice do not generate a gut mucosal T cell response.
Figure 6: Treatment with anti-CD70 abrogates T cell proliferation in the lamina propria and intraepithelial lymphocyte compartment.

Similar content being viewed by others

References

  1. Klein, J.R. Ontogeny of the Thy-1, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa. J. Exp. Med. 164, 309–314 (1986).

    Article  CAS  Google Scholar 

  2. Huleatt, J.W. & Lefrancois, L. Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo. J. Immunol. 154, 5684–5693 (1995).

    CAS  PubMed  Google Scholar 

  3. Beagley, K.W. & Husband, A.J. Intraepithelial lymphocytes: origins, distribution, and function. Crit. Rev. Immunol. 18, 237–254 (1998).

    Article  CAS  Google Scholar 

  4. Goodman, T. & Lefrancois, L. Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 170, 1569–1581 (1989).

    Article  CAS  Google Scholar 

  5. Pirzer, U.C., Schurmann, G., Post, S., Betzler, M. & Meuer, S.C. Differential responsiveness to CD3-Ti vs. CD2-dependent activation of human intestinal T lymphocytes. Eur. J. Immunol. 20, 2339–2342 (1990).

    Article  CAS  Google Scholar 

  6. Targan, S.R., Deem, R.L., Liu, M., Wang, S. & Nel, A. Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J. Immunol. 154, 664–675 (1995).

    CAS  PubMed  Google Scholar 

  7. Zhou, Z., Pollok, K.E., Kim, K.K., Kim, Y.J. & Kwon, B.S. Functional analysis of T-cell antigen 4–1BB in activated intestinal intra-epithelial T lymphocytes. Immunol. Lett. 41, 177–184 (1994).

    Article  CAS  Google Scholar 

  8. Wang, H.C. & Klein, J.R. Multiple levels of activation of murine CD8+ intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-γ, and IL-10 regulation. J. Immunol. 167, 6717–6723 (2001).

    Article  CAS  Google Scholar 

  9. Kim, S.K., Schluns, K.S. & Lefrancois, L. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J. Immunol. 163, 4125–4132 (1999).

    CAS  PubMed  Google Scholar 

  10. Kim, S.K. et al. Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc. Natl. Acad. Sci. USA 95, 10814–10819 (1998).

    Article  CAS  Google Scholar 

  11. Gonsky, R. et al. Mucosa-specific targets for regulation of IFN-γ expression: lamina propria T cells use different cis-elements than peripheral blood T cells to regulate transactivation of IFN-γ expression. J. Immunol. 164, 1399–1407 (2000).

    Article  CAS  Google Scholar 

  12. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  Google Scholar 

  13. Iwasaki, A. & Kelsall, B.L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000).

    Article  CAS  Google Scholar 

  14. Mowat, A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  15. Castellaneta, A., Abe, M., Morelli, A.E. & Thomson, A.W. Identification and characterization of intestinal Peyer's patch interferon-α producing (plasmacytoid) dendritic cells. Hum. Immunol. 65, 104–113 (2004).

    Article  CAS  Google Scholar 

  16. Bilsborough, J., George, T.C., Norment, A. & Viney, J.L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    Article  CAS  Google Scholar 

  17. Iwasaki, A. & Kelsall, B.L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  Google Scholar 

  18. Williamson, E., Bilsborough, J.M. & Viney, J.L. Regulation of mucosal dendritic cell function by receptor activator of NF-κB (RANK)/RANK ligand interactions: impact on tolerance induction. J. Immunol. 169, 3606–3612 (2002).

    Article  CAS  Google Scholar 

  19. Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–390 (2002).

    Article  CAS  Google Scholar 

  20. Futagawa, T. et al. Expression and function of 4–1BB and 4–1BB ligand on murine dendritic cells. Int. Immunol. 14, 275–286 (2002).

    Article  CAS  Google Scholar 

  21. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  Google Scholar 

  22. Arens, R. et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNγ-mediated B cell depletion. Immunity 15, 801–812 (2001).

    Article  CAS  Google Scholar 

  23. Tesselaar, K. et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27–CD70 interactions. Nat. Immunol. 4, 49–54 (2003).

    Article  CAS  Google Scholar 

  24. Tesselaar, K. et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J. Immunol. 170, 33–40 (2003).

    Article  CAS  Google Scholar 

  25. Le, A.X. et al. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J. Immunol. 142, 1366–1371 (1989).

    CAS  PubMed  Google Scholar 

  26. Powell, D.W. et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 277, C1–C9 (1999).

    Article  CAS  Google Scholar 

  27. Thompson, R.J., Bouwer, H.G., Portnoy, D.A. & Frankel, F.R. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun. 66, 3552–3561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Manjunath, N. et al. A transgenic mouse model to analyze CD8+ effector T cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 96, 13932–13937 (1999).

    Article  CAS  Google Scholar 

  29. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  Google Scholar 

  30. Kim, S.K., Reed, D.S., Heath, W.R., Carbone, F. & Lefrancois, L. Activation and migration of CD8 T cells in the intestinal mucosa. J. Immunol. 159, 4295–4306 (1997).

    CAS  PubMed  Google Scholar 

  31. Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

    Article  CAS  Google Scholar 

  32. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  33. Kang, H.S. et al. Signaling via LTβR on the lamina propria stromal cells of the gut is required for IgA production. Nat. Immunol. 3, 576–582 (2002).

    Article  CAS  Google Scholar 

  34. Newberry, R.D., McDonough, J.S., McDonald, K.G. & Lorenz, R.G. Postgestational lymphotoxin/lymphotoxin β receptor interactions are essential for the presence of intestinal B lymphocytes. J. Immunol. 168, 4988–4997 (2002).

    Article  CAS  Google Scholar 

  35. Geginat, G., Schenk, S., Skoberne, M., Goebel, W. & Hof, H. A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes. J. Immunol. 166, 1877–1884 (2001).

    Article  CAS  Google Scholar 

  36. Marco, A.J. et al. Penetration of Listeria monocytogenes in mice infected by the oral route. Microb. Pathog. 23, 255–263 (1997).

    Article  CAS  Google Scholar 

  37. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  38. Ardavin, C. Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. Immunol. 3, 582–590 (2003).

    Article  CAS  Google Scholar 

  39. Wilson, H.L. & O'Neill, H.C. Murine dendritic cell development: difficulties associated with subset analysis. Immunol. Cell Biol. 81, 239–246 (2003).

    Article  Google Scholar 

  40. MacDonald, T.T. Effector and regulatory lymphoid cells and cytokines in mucosal sites. Curr. Top. Microbiol. Immunol. 236, 113–135 (1999).

    CAS  PubMed  Google Scholar 

  41. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  Google Scholar 

  42. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  CAS  Google Scholar 

  43. Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

    Article  CAS  Google Scholar 

  44. Offit, P.A., Cunningham, S.L. & Dudzik, K.I. Memory and distribution of virus-specific cytotoxic T lymphocytes (CTLs) and CTL precursors after rotavirus infection. J. Virol. 65, 1318–1324 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Belyakov, I.M. et al. Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl. Acad. Sci. USA 95, 1709–1714 (1998).

    Article  CAS  Google Scholar 

  46. Masopust, D., Jiang, J., Shen, H. & Lefrancois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. J. Immunol. 166, 2348–2356 (2001).

    Article  CAS  Google Scholar 

  47. Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8αα and the CD8αβ TCR-α/β murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

    Article  CAS  Google Scholar 

  48. Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

    Article  CAS  Google Scholar 

  49. Yamamoto, M. et al. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164, 5184–5191 (2000).

    Article  CAS  Google Scholar 

  50. Spahn, T.W. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 31, 1278–1287 (2001).

    Article  CAS  Google Scholar 

  51. Banks, T.A. et al. Lymphotoxin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155, 1685–1693 (1995).

    CAS  Google Scholar 

  52. Davis, I.A., Knight, K.A. & Rouse, B.T. The spleen and organized lymph nodes are not essential for the development of gut-induced mucosal immune responses in lymphotoxin-α deficient mice. Clin. Immunol. Immunopathol. 89, 150–159 (1998).

    Article  CAS  Google Scholar 

  53. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  54. Eugster, H.P. et al. Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-α double-deficient mice. Int. Immunol. 8, 23–36 (1996).

    Article  CAS  Google Scholar 

  55. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  56. Lefrancois, L. & Lycke, N. in Current Protocols in Immunology (ed. Caico, R.) 3.19.1–16 (John Wiley & Sons, New York, 1996).

    Google Scholar 

  57. Meyer, A.L. et al. Rapid depletion of peripheral antigen-specific T cells in TCR-transgenic mice after oral administration of myelin basic protein. J. Immunol. 166, 5773–5781 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schlesinger for help with ELISPOT assays. Supported by the US National Institutes of Health (AI46566 to N.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Manjunath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Phenotype and morphology of CD70+ APC and their presence in MuMT and RAG-1−/− mice. (PDF 226 kb)

Supplementary Fig. 2

Purity of cell preparations and capture of Lm by CD70+ APC. (PDF 369 kb)

Supplementary Fig. 3

CD70 blockade selectively inhibits mucosal T cell expansion. (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laouar, A., Haridas, V., Vargas, D. et al. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol 6, 698–706 (2005). https://doi.org/10.1038/ni1212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing