Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte

Abstract

Sepsis induces lymphocyte apoptosis and prevention of lymphocyte death may improve the chances of surviving this disorder. We compared the efficacy of a selective caspase-3 inhibitor to a polycaspase inhibitor and to caspase-3−/− mice. Both inhibitors prevented lymphocyte apoptosis and improved survival. Caspase-3−/− mice shared a decreased, but not total, block of apoptosis. The polycaspase inhibitor caused a very substantial decrease in bacteremia. Caspase inhibitors did not benefit RAG-1−/− mice, which had a >tenfold increase in bacteremia compared to controls. Adoptive transfer of T cells that overexpressed the anti-apoptotic protein Bcl-2 increased survival. T cells stimulated with anti-CD3 and anti-CD28 produced increased interleukin 2 and interferon γ by 6 h. Thus, caspase inhibitors enhance immunity by preventing lymphocyte apoptosis and lymphocytes act rapidly, within 24 h, to control infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of caspase inhibitors on survival.
Figure 2: Effect of caspase inhibitors on lymphocyte apoptosis after sepsis induction.
Figure 3: Hematoxylin and eosin staining of thymi from caspase-3−/− and B6 mice.
Figure 4: Lymphocytes are required for caspase inhibitor–improved survival of mice.

Similar content being viewed by others

References

  1. Wang, S. D., Huang, K. J., Lin, Y. S. & Lei, H. Y. Sepsis-induced apoptosis of the thymocytes in mice. J. Immunol. 152 , 5014–5021 (1994).

    CAS  PubMed  Google Scholar 

  2. Ayala, A., Herndon, C., Lehman, D. & Chaudry, I. H. Differential induction of apoptosis in lymphoid tissue during sepsis: variation in onset, frequency and nature of the mediators. Blood 87, 4261–4275 (1996).

    CAS  PubMed  Google Scholar 

  3. Hotchkiss, R. S. et al. Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T- and B-cell deficient mice. Crit. Care Med. 25, 1298–1307 ( 1997).

    Article  CAS  Google Scholar 

  4. Hotchkiss, R. S. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27, 1230 –1251 (1999).

    Article  CAS  Google Scholar 

  5. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  Google Scholar 

  6. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028– 1042 (1999).

    Article  CAS  Google Scholar 

  7. Endres, M. et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cere. Blood Flow Metabol. 18, 238–247 ( 1988).

    Article  Google Scholar 

  8. Fukuzuka, K. et al. Caspase-3-dependent organ apoptosis early after burn injury . Ann. Surg. 229, 851–858 (1999).

    Article  CAS  Google Scholar 

  9. Grobmeyer, S. R. et al. Peptidomimetic fluoromethylketone rescues mice from lethal endotoxic shock. Mol. Med. 5, 585– 594 (1999).

    Article  Google Scholar 

  10. Hotchkiss, R. S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl Acad, Sci. USA 96, 14541 –14546 (1999).

    Article  CAS  Google Scholar 

  11. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1 and DR3 and is lethal prenatally . Immunity 9, 267–276 (1998).

    Article  CAS  Google Scholar 

  12. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).

    Article  CAS  Google Scholar 

  13. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339– 352 (1998).

    Article  CAS  Google Scholar 

  14. Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 6, 1043–1053 (1999).

    Article  CAS  Google Scholar 

  15. Kuida, K. et al. Decrease apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  Google Scholar 

  16. Woo, M. et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806–819 (1998).

    Article  CAS  Google Scholar 

  17. Garcia-Calvo, M. et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273, 32608– 32613 (1998).

    Article  CAS  Google Scholar 

  18. Baker, C. C., Chaudry, I. H., Gains, H. O. & Baue, A. E. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture mode. Surgery 94, 331–335 (1983).

    CAS  PubMed  Google Scholar 

  19. Remick, D. G., Newcomb, D. E., Bolgos, G. L. & Call, D. R. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide versus cecal ligation and puncture. Shock 13, 110–116 ( 2000).

    Article  CAS  Google Scholar 

  20. Hotchkiss, R. S. et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J. Immunol. 162, 4148–4156 (1999).

    CAS  PubMed  Google Scholar 

  21. Hotchkiss, R. S. et al. Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F]fluoromisonidazole. Am. J. Physiol. 30, 965–972 (1991).

    Google Scholar 

  22. Janicke, R. U., Sprengart, M. L., Wati, M. R. & Porter, A. G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357 –9360 (1998).

    Article  CAS  Google Scholar 

  23. Medzhitov, R., Janeway, C. Innate immunity. N. Engl. J. Med. 343, 338–344 ( 2000).

    Article  CAS  Google Scholar 

  24. Abbas, A. K., Lichtman, A. H. & Pober, J. S. in Cellular and Molecular Immunology 4th edn, 4 (W. B. Saunders Co., Philadelphia, 2000).

    Google Scholar 

  25. Janeway, C. A., Travers, P., Walport, M. & Capra, J. D. in Immunobiology: The immune system in health and disease 4th edn, 219 (Current Biology Publications, London, 1999).

    Google Scholar 

  26. Braun, J. S. et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nature Med. 5, 298– 302. (1999).

    Article  CAS  Google Scholar 

  27. Oberholzer, A., Oberholzer, C. & Moldawer, L. L. Cytokine signaling- regulation of the immune system in normal and critically ill states. Crit. Care Med. 28, S3 (2000).

    Article  Google Scholar 

  28. Yagupsky, P. & Notte, F. S. Quantitative aspects of septicemia . Clin. Microbiol. Rev. 3, 269– 279 (1990)

    Article  CAS  Google Scholar 

  29. Bell, L. M., Alpert, G., Campos, J. M. & Plotkin, S. A. Routine quantitative blood cultures in children with Haemophilus influenzae or Streptococcus pneumoniae bacteremia. Pediatrics 76, 901–904 ( 1985).

    CAS  PubMed  Google Scholar 

  30. Goronzy, J., Weyand, C., Quan, J., Fathman, C. G. & O'Hanley, P. Enhanced cell-mediated protection against fatal Escherichia coli septicemia induced by treatment with recombinant IL-2 . J. Immunol. 142, 1134– 1138 (1989).

    CAS  PubMed  Google Scholar 

  31. Docke, W. E. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nature Med. 3, 678– 681 (1997).

    Article  CAS  Google Scholar 

  32. Garcia-Calvo et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors . J. Biol. Chem. 273, 32608– 32613 (1998).

    Article  CAS  Google Scholar 

  33. Garcia-Calvo, M. et al. Purification and catalytic properties of human caspase family members. Cell Death Differ 6, 362– 369 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Laregina, Assistant Director, Diagnostic Services, Division of Comparative Medicine and the Barnes Jewish Hospital Microbiology Laboratory, Washington University School of Medicine for their help with the bacteriological studies. Supported by Merck Frosst (NIH GM44118 and GM 55194) and the Alan A. and Edith L. Wolff Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Hotchkiss.

Supplementary information

Web Figure 1.

Caspase inhibition by M-920 does not decrease TNF-a or IL1b. Mice underwent CLP and were treated with M-920 (20 mg/kg body weight) or diluent 90 min after surgery. A second dose of M-920 or diluent was administered at 12 h after surgery and mice were killed a 20 h after CLP. Plasma samples were obtained at various time points and the two groups of mice and TNF-a or IL1b determined by ELISA. There was a progressive increase in TNF-a or IL1b that was not affected by M-920 treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotchkiss, R., Chang, K., Swanson, P. et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1, 496–501 (2000). https://doi.org/10.1038/82741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing