Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases

Abstract

Signaling-responsive MAP kinases (MAPKs) are key in mediating immune responses and are activated through the phosphorylation of a Thr-X-Tyr motif by upstream MAPK kinases. Here we show that T cells stimulated through the T cell receptor (TCR) used an alternative mechanism in which p38 was phosphorylated on Tyr323 and subsequently autophosphorylated residues Thr180 and Tyr182. This required the TCR-proximal tyrosine kinase Zap70 but not the adaptor protein LAT, which was required for activation of extracellular signal–regulated protein kinase MAPKs. TCR activation of p38 lacking Tyr323 was diminished, and blocking of p38 activity prevented p38 dual phosphorylation in normal T cells but not in B cells. Thus, phosphorylation of Tyr323 dependent on the tyrosine kinase Lck and mediated by Zap70 serves as an important mechanism for TCR activation of p38 in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p38 from activated T cells but not B cells autophosphorylates.
Figure 2: Analysis of TCR-induced p38 and Erk phosphorylation in wild-type and signaling-defective Jurkat T cells.
Figure 3: Lck, Fyn, and Zap70 activate p38 even in the absence of Tyr182 phosphorylation.
Figure 4: Tyr323 phosphorylation and activation of p38.
Figure 5: Phosphorylation of Tyr323 by p38 in vivo.
Figure 6: TCR-induced p38 phosphorylation is Zap70 dependent, and Tyr323 is required for TCR- but not PMA-mediated activation of T cell p38.

Similar content being viewed by others

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  2. Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  Google Scholar 

  3. Rincon, M. et al. Conference highlight: do T cells care about the mitogen-activated protein kinase signalling pathways. Immunol. Cell Biol. 78, 166–175 (2000).

    Article  CAS  Google Scholar 

  4. Rincon, M., Flavell, R.A. & Davis, R.A. The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic. Biol. Med. 28, 1328–1337 (2000).

    Article  CAS  Google Scholar 

  5. Rincon, M., Flavell, R.A. & Davis, R.J. Signal transduction by MAP kinases in T lymphocytes. Oncogene 20, 2490–2497 (2001).

    Article  CAS  Google Scholar 

  6. Schaeffer, H.J. & Weber, M.J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999).

    Article  CAS  Google Scholar 

  7. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  Google Scholar 

  8. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91–94 (2000).

    Article  CAS  Google Scholar 

  9. Han, J. & Ulevitch, R.J. Emerging targets for anti-inflammatory therapy. Nat. Cell Biol. 1, E39–E40 (1999).

    Article  CAS  Google Scholar 

  10. Rincon, M. MAP-kinase signaling pathways in T cells. Curr. Opin. Immunol. 13, 339–345 (2001).

    Article  CAS  Google Scholar 

  11. Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.M. & Wilson, K.P. The structure of phosphorylated p38γ is monomeric and reveals a conserved activation-loop conformation. Structure Fold. Des. 7, 1057–1065 (1999).

    Article  CAS  Google Scholar 

  12. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  Google Scholar 

  13. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell. Signal. 12, 1–13 (2000).

    Article  CAS  Google Scholar 

  14. Tanaka, N. et al. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep. 3, 785–791 (2002).

    Article  CAS  Google Scholar 

  15. Zhang, J. et al. p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J. Immunol. 162, 3819–3829 (1999).

    CAS  PubMed  Google Scholar 

  16. Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J. 17, 2817–2829 (1998).

    Article  CAS  Google Scholar 

  17. Ward, S.G., Parry, R.V., Matthews, J. & O'Neill, L. A p38 MAP kinase inhibitor SB203580 inhibits CD28-dependent T cell proliferation and IL-2 production. Biochem. Soc. Trans. 25, 304S (1997).

    Article  CAS  Google Scholar 

  18. Crawley, J.B. et al. T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation. J. Biol. Chem. 272, 15023–15027 (1997).

    Article  CAS  Google Scholar 

  19. Matsuda, S., Moriguchi, T., Koyasu, S. & Nishida, E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J. Biol. Chem. 273, 12378–12382 (1998).

    Article  CAS  Google Scholar 

  20. Haeryfar, S.M. & Hoskin, D.W. Selective pharmacological inhibitors reveal differences between Thy-1- and T cell receptor-mediated signal transduction in mouse T lymphocytes. Int. Immunopharmacol. 1, 689–698 (2001).

    Article  CAS  Google Scholar 

  21. Jiang, Y. et al. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J. Biol. Chem. 272, 11096–11102 (1997).

    Article  CAS  Google Scholar 

  22. Finco, T.S., Kadlecek, T., Zhang, W., Samelson, L.E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    Article  CAS  Google Scholar 

  23. Chan, A.C., Desai, D.M. & Weiss, A. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12, 555–592 (1994).

    Article  CAS  Google Scholar 

  24. Williams, B.L. et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399 (1998).

    Article  CAS  Google Scholar 

  25. Steinberg, M. et al. T-cell receptor-induced phosphorylation of the ζ chain is efficiently promoted by ZAP-70 but not Syk. Blood 104, 760–767 (2004).

    Article  CAS  Google Scholar 

  26. Salojin, K.V., Zhang, J. & Delovitch, T.L. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway. J. Immunol. 163, 844–853 (1999).

    CAS  PubMed  Google Scholar 

  27. Yu, H., Leitenberg, D., Li, B. & Flavell, R.A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med. 194, 915–926 (2001).

    Article  CAS  Google Scholar 

  28. Salvador, J.M., Mittelstadt, P.R., Belova, G.I., Fornace, A.J., Jr & Ashwell, J.D. The autoimmune suppressor GADD45α inhibits the T cell alternative p38 activation pathway. Nat. Immunol. (27 February 2005) 10.1038/ni1176.

  29. Chi, H., Lu, B., Takekawa, M., Davis, R.J. & Flavell, R.A. GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells. EMBO J. 23, 1576–1586 (2004).

    Article  CAS  Google Scholar 

  30. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  31. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  32. Bell, M. & Engelberg, D. Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity. J. Biol. Chem. 278, 14603–14606 (2003).

    Article  CAS  Google Scholar 

  33. Ge, B. et al. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295, 1291–1294 (2002).

    Article  CAS  Google Scholar 

  34. D'Oro, U., Sakaguchi, K., Appella, E. & Ashwell, J.D. Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol. Cell. Biol. 16, 4996–5003 (1996).

    Article  CAS  Google Scholar 

  35. Salvador, J.M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16, 499–508 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gutkind for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D Ashwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SB203580 inhibits T cell p38 autophosphorylation. (PDF 148 kb)

Supplementary Fig. 2

Zap70 phosphorylates p38 on Try-323. (PDF 53 kb)

Supplementary Fig. 3

Specificity of affinity-purified anti-phospho-323 p38 antibody. (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvador, J., Mittelstadt, P., Guszczynski, T. et al. Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases. Nat Immunol 6, 390–395 (2005). https://doi.org/10.1038/ni1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing