Review Article | Published:

How T cells 'see' antigen

Nature Immunologyvolume 6pages239245 (2005) | Download Citation

Subjects

Abstract

T lymphocytes bearing αβ T cell receptors are pivotal in the immune response of most vertebrates. For example, helper T cells orchestrate antibody production by B cells as well as stimulating other cells, whereas cytotoxic T cells kill virally infected or abnormal cells. Regulatory T cells act to dampen responsiveness, and natural killer–like T cells monitor lipid metabolism. The specificity of these cells is governed by the αβ T cell receptors — antibody-like heterodimeric receptors that detect antigenic fragments (peptides) or lipids bound to histocompatibility molecules. Intriguing clues as to how these peculiar ligands are recognized have gradually emerged over the years and tell a remarkable story of biochemical and cellular novelty. Here we summarize some of the more recent work on αβ T cell receptor recognition and discuss the implications for activation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

  2. 2

    Davis, M.M. & Boniface, J.J. Reich, Z., Lyons, D. Hampl, J. Arden, B. and Chien, Y. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

  3. 3

    van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

  4. 4

    Leckband, D., Muller, W., Schmitt, F.J. & Ringsdorf, H. Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys. J. 69, 1162–1169 (1995).

  5. 5

    Janin, J. The kinetics of protein-protein recognition. Proteins 28, 153–161 (1997).

  6. 6

    Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

  7. 7

    Ding, Y.H., Baker, B.M., Garboczi, D.N., Biddison, W.E. & Wiley, D.C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

  8. 8

    Hare, B.J. et al. Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor. Nat. Struct. Biol. 6, 574–581 (1999).

  9. 9

    Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

  10. 10

    Degano M. et al. A functional hotspot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

  11. 11

    Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

  12. 12

    Reiser, J.B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

  13. 13

    Kjer-Nielsen L. et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

  14. 14

    Stewart-Jones, G.B., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

  15. 15

    Luz, J.G. et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195, 1175–1186 (2002).

  16. 16

    Garcia, K.C. et al. αβ T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc. Natl. Acad. Sci. USA 94, 13838–13843 (1997).

  17. 17

    Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T-cell activation. Mol. Cell 12, 1367–1378 (2003).

  18. 18

    Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

  19. 19

    Boniface, J.J., Reich, Z., Lyons, D.S. & Davis, M.M. Thermodynamics of T Cell receptor binding to peptide/MHC: evidence for a general mechanism of molecular scanning. Proc. Natl. Acad. Sci. USA 96, 11446–11451 (1999).

  20. 20

    Garcia, K.C., Radu, C.G., Ho, J., Ober, R.J. & Ward, S.E. Kinetics and thermodynamics of T cell receptor-autoantigen interactions in murine experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 98, 6818–6823 (2001).

  21. 21

    Anikeeva, N. et al. Distinct molecular mechanisms account for the specificity of two different T-cell receptors. Biochemistry 42, 4709–4716 (2003).

  22. 22

    Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

  23. 23

    Patten, P.A., Gray, N.S. & Yang, P.L. Marks, Wedemeyer, G.J., Boniface, J.J., Stevens, R.C. and Schultz, P.G. The immunological evolution of catalysis. Science 271, 1086–1091 (1996).

  24. 24

    Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997).

  25. 25

    Ulrich, H.D. et al. The interplay between binding energy and catalysis in the evolution of a catalytic antibody. Nature 389, 271–275 (1997).

  26. 26

    Borg, N.A. et al. The CDR3 region of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition Nat. Immunol. 6, 171–180 (2005).

  27. 27

    Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

  28. 28

    Housset, D. & Malissen, B. What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol. 24, 429–437 (2003).

  29. 29

    Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

  30. 30

    Cochran, J.R., Cameron, T.O. & Stern, L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

  31. 31

    Cochran, J.R., Cameron, T.O., Stone, J.D., Lubetsky, J.B. & Stern, L.J. Receptor proximity, not intermolecular orientation, is critical for triggering T-cell activation. J. Biol. Chem. 276, 28068–28074 (2001).

  32. 32

    Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

  33. 33

    Sim, B.C., Zerva, L., Greene, M.I. & Gascoigne, N.R. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science 273, 963–966 (1996).

  34. 34

    Maynard, J. et al. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: Insights into MHC bias and antigen specificity. Immunity 22, 81–92 (2005).

  35. 35

    Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. A two-step binding mechanism for T cell receptor recognition of peptide-MHC. Nature 418, 552–556 (2002).

  36. 36

    Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

  37. 37

    Nanda, N.K., Arzooo, K.K., Geysen, H.M., Sette, A. & Sercarz, E.E. Recognition of multiple peptide cores by a single T cell receptor. J. Exp. Med. 182, 531–539 (1995).

  38. 38

    Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

  39. 39

    Kersh, G.J. & Allen, P.M. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184, 1259–1268 (1996).

  40. 40

    Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A. & Davis, M.M. Kinetics of T cell receptor binding to peptide-MHC complexes: Correlation of the dissociation rate with T cell responsiveness. Proc. Natl. Acad. Sci. USA 91, 12862–12866 (1994).

  41. 41

    Lyons, D.S. et al. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).

  42. 42

    Alam, S.M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

  43. 43

    Kersh, G.J., Kersh, E.N., Fremont, D.H. & Allen, P.M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

  44. 44

    Sykulev, Y., Vugmeyster, Y., Brunmark, A., Ploegh, H.L. & Eisen, H.N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity 9, 475–483 (1998).

  45. 45

    Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

  46. 46

    Degano, M. et al. A functional hotspot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

  47. 47

    Kalergis, A.M. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. 2, 229–234 (2001).

  48. 48

    Kjer-Nielsen, L. et al. Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3. Proc. Natl. Acad. Sci. USA 101, 7675–7680 (2004).

  49. 49

    Arnett, K.L., Harrison, S.C. & Wiley, D.C. Crystal structure of a human CD3-ε/δ dimer in complex with a UCHT1 single-chain antibody fragment. Proc. Natl. Acad. Sci. USA 101, 16268–16273 (2004).

  50. 50

    Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990).

  51. 51

    Demotz, S., Grey, H.M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249, 1028–1030 (1990).

  52. 52

    Christinck, E.R., Luscher, M.A., Barber, B.H. & Williams, D.B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67–70 (1991).

  53. 53

    Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity 4, 565–571 (1996).

  54. 54

    Brower, R.C. et al. Minimal requirements for peptide mediated activation of CD8+ CTL. Molecular Immunol. 31, 1285–93 (1994).

  55. 55

    Reay, P.A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000).

  56. 56

    Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T lymphocytes. Nature 419, 845–849 (2002).

  57. 57

    Purbhoo, M.C., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require formation of a stable mature immunolgical synapse. Nat. Immunol. 5, 524–530 (2004).

  58. 58

    Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 100, 14145–14150 (2003).

  59. 59

    Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

  60. 60

    Baylor, D. How photons start vision. Proc. Natl. Acad. Sci. USA 93, 560–565 (1996).

  61. 61

    Peterson, D.A., DiPaolo, R.J., Kanagawa, O. & Unanue, E.R. Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells. J. Immunol. 162, 3117–3120 (1999).

  62. 62

    Seed, B. Initiation of signal transduction by receptor aggregation: role of nonreceptor tyrosine kinases. Semin. Immunol. 7, 3–11 (1995).

  63. 63

    Boniface, J.J. et al. Initiation of signal transduction through the T cell receptor requires the productive multivalent engagement of peptide/MHC receptor complexes. Immunity 9, 459–466 (1998).

  64. 64

    Delon, J. et al. CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity 9, 467–473 (1998).

  65. 65

    Ge, Q. et al. Soluble peptide-MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. Proc. Natl. Acad. Sci. USA 99, 13729–13734 (2002).

  66. 66

    Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

  67. 67

    Li, Q-J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

  68. 68

    Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

  69. 69

    Holler, P.D., Chlewicki, L.K. & Kranz, D.M. TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. 4, 55–62 (2003).

  70. 70

    Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

  71. 71

    Sun, Z.J., Kim, K.S., Wagner, G. & Reinherz, E.L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105, 913–923 (2001).

  72. 72

    Aivaizian, D. & Stern, L.J. Phosphorylation of T cell receptor ξ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

  73. 73

    Sun, Z.J., Kim, K.S., Wagner, G. & Reinherz, E.L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3εγ heterodimer. Cell 105, 913–923 (2001).

  74. 74

    Gil, D., Schamel, W.A., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3 reveals a ligand induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

  75. 75

    Werlen, G. & Palmer, E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–305 (2002).

  76. 76

    Janeway, C.A., Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 10, 645–674 (1992).

  77. 77

    Brown, J.H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

  78. 78

    Janeway, C.A. Jr. How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci USA 98, 7461–7468 (2001)

  79. 79

    Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

  80. 80

    Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755 (2003).

  81. 81

    Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

  82. 82

    Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

Download references

Acknowledgements

We thank K.C. Garcia for discussions. Supported by the Alfred Benzon Foundation and Danish Medical Research Council (M.K.), National Institutes of Health and Howard Hughes Medical Institute.

Author information

Affiliations

  1. The Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 94305, California, USA

    • Michelle Krogsgaard
    •  & Mark M Davis

Authors

  1. Search for Michelle Krogsgaard in:

  2. Search for Mark M Davis in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mark M Davis.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/ni1173

Further reading