Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How T cells 'see' antigen

Abstract

T lymphocytes bearing αβ T cell receptors are pivotal in the immune response of most vertebrates. For example, helper T cells orchestrate antibody production by B cells as well as stimulating other cells, whereas cytotoxic T cells kill virally infected or abnormal cells. Regulatory T cells act to dampen responsiveness, and natural killer–like T cells monitor lipid metabolism. The specificity of these cells is governed by the αβ T cell receptors — antibody-like heterodimeric receptors that detect antigenic fragments (peptides) or lipids bound to histocompatibility molecules. Intriguing clues as to how these peculiar ligands are recognized have gradually emerged over the years and tell a remarkable story of biochemical and cellular novelty. Here we summarize some of the more recent work on αβ T cell receptor recognition and discuss the implications for activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible role of heat capacity in T cell activation.
Figure 2: Models of T cell activation.

Similar content being viewed by others

References

  1. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, M.M. & Boniface, J.J. Reich, Z., Lyons, D. Hampl, J. Arden, B. and Chien, Y. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Leckband, D., Muller, W., Schmitt, F.J. & Ringsdorf, H. Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys. J. 69, 1162–1169 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janin, J. The kinetics of protein-protein recognition. Proteins 28, 153–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Y.H., Baker, B.M., Garboczi, D.N., Biddison, W.E. & Wiley, D.C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Hare, B.J. et al. Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor. Nat. Struct. Biol. 6, 574–581 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Degano M. et al. A functional hotspot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Reiser, J.B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kjer-Nielsen L. et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Stewart-Jones, G.B., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Luz, J.G. et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195, 1175–1186 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia, K.C. et al. αβ T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc. Natl. Acad. Sci. USA 94, 13838–13843 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T-cell activation. Mol. Cell 12, 1367–1378 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Boniface, J.J., Reich, Z., Lyons, D.S. & Davis, M.M. Thermodynamics of T Cell receptor binding to peptide/MHC: evidence for a general mechanism of molecular scanning. Proc. Natl. Acad. Sci. USA 96, 11446–11451 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia, K.C., Radu, C.G., Ho, J., Ober, R.J. & Ward, S.E. Kinetics and thermodynamics of T cell receptor-autoantigen interactions in murine experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 98, 6818–6823 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anikeeva, N. et al. Distinct molecular mechanisms account for the specificity of two different T-cell receptors. Biochemistry 42, 4709–4716 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Patten, P.A., Gray, N.S. & Yang, P.L. Marks, Wedemeyer, G.J., Boniface, J.J., Stevens, R.C. and Schultz, P.G. The immunological evolution of catalysis. Science 271, 1086–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ulrich, H.D. et al. The interplay between binding energy and catalysis in the evolution of a catalytic antibody. Nature 389, 271–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Borg, N.A. et al. The CDR3 region of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Housset, D. & Malissen, B. What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol. 24, 429–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Cochran, J.R., Cameron, T.O. & Stern, L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Cochran, J.R., Cameron, T.O., Stone, J.D., Lubetsky, J.B. & Stern, L.J. Receptor proximity, not intermolecular orientation, is critical for triggering T-cell activation. J. Biol. Chem. 276, 28068–28074 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sim, B.C., Zerva, L., Greene, M.I. & Gascoigne, N.R. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science 273, 963–966 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Maynard, J. et al. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: Insights into MHC bias and antigen specificity. Immunity 22, 81–92 (2005).

    CAS  PubMed  Google Scholar 

  35. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. A two-step binding mechanism for T cell receptor recognition of peptide-MHC. Nature 418, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Nanda, N.K., Arzooo, K.K., Geysen, H.M., Sette, A. & Sercarz, E.E. Recognition of multiple peptide cores by a single T cell receptor. J. Exp. Med. 182, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kersh, G.J. & Allen, P.M. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184, 1259–1268 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A. & Davis, M.M. Kinetics of T cell receptor binding to peptide-MHC complexes: Correlation of the dissociation rate with T cell responsiveness. Proc. Natl. Acad. Sci. USA 91, 12862–12866 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lyons, D.S. et al. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Alam, S.M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kersh, G.J., Kersh, E.N., Fremont, D.H. & Allen, P.M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Sykulev, Y., Vugmeyster, Y., Brunmark, A., Ploegh, H.L. & Eisen, H.N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity 9, 475–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Degano, M. et al. A functional hotspot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kalergis, A.M. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. 2, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kjer-Nielsen, L. et al. Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3. Proc. Natl. Acad. Sci. USA 101, 7675–7680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arnett, K.L., Harrison, S.C. & Wiley, D.C. Crystal structure of a human CD3-ε/δ dimer in complex with a UCHT1 single-chain antibody fragment. Proc. Natl. Acad. Sci. USA 101, 16268–16273 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Demotz, S., Grey, H.M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249, 1028–1030 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Christinck, E.R., Luscher, M.A., Barber, B.H. & Williams, D.B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Brower, R.C. et al. Minimal requirements for peptide mediated activation of CD8+ CTL. Molecular Immunol. 31, 1285–93 (1994).

    Article  CAS  Google Scholar 

  55. Reay, P.A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T lymphocytes. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Purbhoo, M.C., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require formation of a stable mature immunolgical synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 100, 14145–14150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Baylor, D. How photons start vision. Proc. Natl. Acad. Sci. USA 93, 560–565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peterson, D.A., DiPaolo, R.J., Kanagawa, O. & Unanue, E.R. Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells. J. Immunol. 162, 3117–3120 (1999).

    CAS  PubMed  Google Scholar 

  62. Seed, B. Initiation of signal transduction by receptor aggregation: role of nonreceptor tyrosine kinases. Semin. Immunol. 7, 3–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Boniface, J.J. et al. Initiation of signal transduction through the T cell receptor requires the productive multivalent engagement of peptide/MHC receptor complexes. Immunity 9, 459–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Delon, J. et al. CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity 9, 467–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ge, Q. et al. Soluble peptide-MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. Proc. Natl. Acad. Sci. USA 99, 13729–13734 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. Li, Q-J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Holler, P.D., Chlewicki, L.K. & Kranz, D.M. TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. 4, 55–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, Z.J., Kim, K.S., Wagner, G. & Reinherz, E.L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105, 913–923 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Aivaizian, D. & Stern, L.J. Phosphorylation of T cell receptor ξ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  Google Scholar 

  73. Sun, Z.J., Kim, K.S., Wagner, G. & Reinherz, E.L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3εγ heterodimer. Cell 105, 913–923 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Gil, D., Schamel, W.A., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3 reveals a ligand induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Werlen, G. & Palmer, E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Janeway, C.A., Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 10, 645–674 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, J.H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Janeway, C.A. Jr. How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci USA 98, 7461–7468 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.C. Garcia for discussions. Supported by the Alfred Benzon Foundation and Danish Medical Research Council (M.K.), National Institutes of Health and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krogsgaard, M., Davis, M. How T cells 'see' antigen. Nat Immunol 6, 239–245 (2005). https://doi.org/10.1038/ni1173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing