Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression

Abstract

It is unknown how B cells that mature during a germinal center reaction 'decide' between plasma or memory cell fate. Here we describe a previously unknown subpopulation of B cells in the human germinal center that is characterized by tyrosine phosphorylated transcriptional activator STAT5. These cells had an activated centrocyte phenotype and had abundant expression of BCL6 but low expression of PRDM1, both encoding transcriptional repression proteins. Using RNA interference and ectopic expression of constitutively activated forms of STAT5, we demonstrate here a function for STAT5 in the self-renewal of B cells in vitro. STAT5b isoform seemed to directly upregulate Bcl-6, and ectopic expression of Bcl-6 in B cells resulted in self-renewal and inhibition of plasma cell differentiation. These data indicate that activation of STAT5 is involved in regulation of memory B cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of STAT5 in human B cells in vivo and in vitro.
Figure 2: Quantitative real-time PCR of BCL6 and PRDM1.
Figure 3: Reduction of STAT5 expression limits the proliferative potential of primary human B cells.
Figure 4: Expression of CA-STAT5b leads to survival and expansion of B cell populations, whereas expression of WT-STAT5b results in survival only.
Figure 5: CA-STAT5b-ER localizes to the nucleus and induces B cell population expansion in a 4HT-dependent way.
Figure 6: Characteristics of peripheral blood human B cells transduced with Bcl-6–IRES-GFP and cultured in CD40L, IL-2 and IL-4.
Figure 7: Induction of BCL6 expression by STAT5.

Similar content being viewed by others

References

  1. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  Google Scholar 

  2. Calame, K.L., Lin, K.I. & Tunyaplin, C. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 21, 205–230 (2003).

    Article  CAS  Google Scholar 

  3. Tarlinton, D.M. & Smith, K.G. Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol. Today 21, 436–441 (2000).

    Article  CAS  Google Scholar 

  4. Stuber, E. & Strober, W. The T cell-B cell interaction via OX40–OX40L is necessary for the T cell-dependent humoral immune response. J. Exp. Med. 183, 979–989 (1996).

    Article  CAS  Google Scholar 

  5. Turner, C.A., Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  Google Scholar 

  6. Reljic, R., Wagner, S.D., Peakman, L.J. & Fearon, D.T. Suppression of signal transducer and activator of transcription 3- dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).

    Article  CAS  Google Scholar 

  7. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  Google Scholar 

  8. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  9. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  Google Scholar 

  10. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    Article  CAS  Google Scholar 

  11. Arpin, C., Banchereau, J. & Liu, Y.J. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J. Exp. Med. 186, 931–940 (1997).

    Article  CAS  Google Scholar 

  12. Shvarts, A. et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti- proliferative p19(ARF)-p53 signaling. Genes Dev. 16, 681–686 (2002).

    Article  CAS  Google Scholar 

  13. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  Google Scholar 

  14. Lischke, A. et al. The interleukin-4 receptor activates STAT5 by a mechanism that relies upon common gamma-chain. J. Biol. Chem. 273, 31222–31229 (1998).

    Article  CAS  Google Scholar 

  15. Rolling, C., Treton, D., Pellegrini, S., Galanaud, P. & Richard, Y. IL4 and IL13 receptors share the γ c chain and activate STAT6, STAT3 and STAT5 proteins in normal human B cells. FEBS Lett. 393, 53–56 (1996).

    Article  CAS  Google Scholar 

  16. Leonard, W.J. & O'Shea, J.J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  Google Scholar 

  17. Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  Google Scholar 

  18. Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. STAT6 is required for mediating responses to IL-4 and for development of TH2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  Google Scholar 

  19. Teglund, S. et al. STAT5a and STAT5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  Google Scholar 

  20. Bunting, K.D. et al. Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood 99, 479–487 (2002).

    Article  CAS  Google Scholar 

  21. Sexl, V. et al. STAT5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  22. Burchill, M.A. et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J. Immunol. 171, 5853–5864 (2003).

    Article  CAS  Google Scholar 

  23. Lord, J.D., McIntosh, B.C., Greenberg, P.D. & Nelson, B.H. The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of STAT5. J. Immunol. 164, 2533–2541 (2000).

    Article  CAS  Google Scholar 

  24. John, S., Robbins, C.M. & Leonard, W.J. An IL-2 response element in the human IL-2 receptor alpha chain promoter is a composite element that binds STAT5, Elf-1, HMG-I(Y) and a GATA family protein. EMBO J. 15, 5627–5635 (1996).

    Article  CAS  Google Scholar 

  25. Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J. Exp. Med. 183, 971–977 (1996).

    Article  CAS  Google Scholar 

  26. Angelin-Duclos, C., Cattoretti, G., Lin, K.I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  Google Scholar 

  27. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  28. Banchereau, J., de Paoli, P., Valle, A., Garcia, E. & Rousset, F. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251, 70–72 (1991).

    Article  CAS  Google Scholar 

  29. Kurata, H., Lee, H.J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of TH2- specific cytokines and transcription factors in developing TH1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  Google Scholar 

  30. Ohashi, K., Miki, T., Hirosawa, S. & Aoki, N. Characterization of the promoter region of human BCL-6 gene. Biochem. Biophys. Res. Commun. 214, 461–467 (1995).

    Article  CAS  Google Scholar 

  31. Wolf, J. et al. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood 87, 3418–3428 (1996).

    CAS  PubMed  Google Scholar 

  32. Hinz, M. et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 196, 605–617 (2002).

    Article  CAS  Google Scholar 

  33. Raman, V.S., Akondy, R.S., Rath, S., Bal, V. & George, A. Ligation of CD27 on B cells in vivo during primary immunization enhances commitment to memory B cell responses. J. Immunol. 171, 5876–5881 (2003).

    Article  CAS  Google Scholar 

  34. Raman, V.S., Bal, V., Rath, S. & George, A. Ligation of CD27 on murine B cells responding to T-dependent and T-independent stimuli inhibits the generation of plasma cells. J. Immunol. 165, 6809–6815 (2000).

    Article  CAS  Google Scholar 

  35. Andjelic, S. et al. Phosphatidylinositol 3-kinase and NF-κB/Rel are at the divergence of CD40-mediated proliferation and survival pathways. J. Immunol. 165, 3860–3867 (2000).

    Article  CAS  Google Scholar 

  36. Dadgostar, H. et al. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc. Natl. Acad. Sci. USA 99, 1497–1502 (2002).

    Article  CAS  Google Scholar 

  37. Ehret, G.B. et al. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J. Biol. Chem. 276, 6675–6688 (2001).

    Article  CAS  Google Scholar 

  38. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    Article  CAS  Google Scholar 

  39. Usui, T. et al. Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype. J. Immunol. 158, 3197–3204 (1997).

    CAS  PubMed  Google Scholar 

  40. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  Google Scholar 

  41. Karras, J.G., Wang, Z., Coniglio, S.J., Frank, D.A. & Rothstein, T.L. Antigen-receptor engagement in B cells induces nuclear expression of STAT5 and STAT6 proteins that bind and transactivate an IFN-γ activation site. J. Immunol. 157, 39–47 (1996).

    CAS  PubMed  Google Scholar 

  42. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  43. Ye, B.H. et al. The bcl-6 proto-oncogene controls germinal-centre formation and TH2- type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  Google Scholar 

  44. Fukuda, T. et al. Disruption of the bcl-6 gene results in an impaired germinal center formation. J. Exp. Med. 186, 439–448 (1997).

    Article  CAS  Google Scholar 

  45. Toyama, H. et al. Memory B cells without somatic hypermutation are generated from bcl-6-deficient B cells. Immunity 17, 329–339 (2002).

    Article  CAS  Google Scholar 

  46. Ariyoshi, K. et al. Constitutive activation of STAT5 by a point mutation in the SH2 domain. J. Biol. Chem. 275, 24407–24413 (2000).

    Article  CAS  Google Scholar 

  47. Heemskerk, M.H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    Article  CAS  Google Scholar 

  48. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  49. Vyth-Dreese, F.A., Dellemijn, T.A., Majoor, D. & de Jong, D. Localization in situ of the co-stimulatory molecules B7.1, B7.2, CD40 and their ligands in normal human lymphoid tissue. Eur. J. Immunol. 25, 3023–3029 (1995).

    Article  CAS  Google Scholar 

  50. Guikema, J.E. et al. Multiple myeloma related cells in patients undergoing autologous peripheral blood stem cell transplantation. Br. J. Haematol. 104, 748–754 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bakker (Netherlands Cancer Institute, Amsterdam, Netherlands) for help in cloning; B. Hooibrink (Academic Medical Center, Amsterdam, Netherlands), A. Pfauth and F. van Diepen (Netherlands Cancer Institute, Amsterdam, Netherlands) for help with cell sorting; T. Dellemijn, L. Oomen and L. Brooks (Netherlands Cancer Institute, Amsterdam, Netherlands) for help with CLSM analyses of the tonsil sections and transduced B cell samples; N. van der Stoep (Leiden University Medical Center, Leiden, Netherlands) for help with the luciferase assays; and the Department of Otolaryngology, Academic Medical Center, Amsterdam, Netherlands (W. Fokkens) for providing tonsil tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hergen Spits.

Ethics declarations

Competing interests

A patent has been filed (application PCT/5B2002/005753) based on the findings presented here and a company has been founded to commercialize the findings reported here.

Supplementary information

Supplementary Fig. 1

Flow cytometric analysis of a representative culture of CA-STAT5b-ER-IRES-ΔNGFR transduced B cells cultured in CD40L, IL-2 and IL-4 in the presence of 4HT. (PDF 219 kb)

Supplementary Fig. 2

Expression of WT-STAT5b-ER in IgG+ cells results in a 4HT dependent expansion in the presence of CD40L, IL-2 and IL-4. (PDF 83 kb)

Supplementary Fig. 3

Effect of BCL6 knock down on the growth of CA-STAT5b transduced B cells. (PDF 88 kb)

Supplementary Fig. 4

Activation of CA-STAT5-ER by 4HT upregulates MYC in transduced primary CD19+ cells. (PDF 106 kb)

Supplementary Fig. 5

Activation of CA-STAT5-ER by 4HT upregulates PAX5 in transduced primary CD19+ cells. (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheeren, F., Naspetti, M., Diehl, S. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol 6, 303–313 (2005). https://doi.org/10.1038/ni1172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing