Article | Published:

Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse

Nature Immunologyvolume 6pages261270 (2005) | Download Citation

Subjects

Abstract

Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor–stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation. These data identify a functionally important interaction between Dyn2 and Vav1 that regulates actin reorganization and multiple signaling pathways in T lymphocytes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Holsinger, L.J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

  2. 2

    Morgan, M.M. et al. Superantigen-induced T cell:B cell conjugation is mediated by LFA-1 and requires signaling through Lck, but not ZAP-70. J. Immunol. 167, 5708–5718 (2001).

  3. 3

    Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

  4. 4

    Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

  5. 5

    Cannon, J.L. & Burkhardt, J.K. The regulation of actin remodeling during T-cell-APC conjugate formation. Immunol. Rev. 186, 90–99 (2002).

  6. 6

    Stowers, L., Yelon, D., Berg, L.J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl. Acad. Sci. USA 92, 5027–5031 (1995).

  7. 7

    Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360–1368 (2003).

  8. 8

    Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16, 331–343 (2002).

  9. 9

    Snapper, S.B. et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

  10. 10

    Labno, C.M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 13, 1619–1624 (2003).

  11. 11

    Orth, J.D. & McNiven, M.A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

  12. 12

    Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol. 5, 133–147 (2004).

  13. 13

    Cao, Y. et al. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J. 21, 4809–4819 (2002).

  14. 14

    Zakaria, S. et al. Differential regulation of TCR-mediated gene transcription by Vav family members. J. Exp. Med. 199, 429–434 (2004).

  15. 15

    Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

  16. 16

    Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

  17. 17

    Okamoto, P.M., Herskovits, J.S. & Vallee, R.B. Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J. Biol. Chem. 272, 11629–11635 (1997).

  18. 18

    So, C.W. et al. The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 14, 594–601 (2000).

  19. 19

    Turner, M. & Billadeau, D.D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat. Rev. Immunol. 2, 476–486 (2002).

  20. 20

    Shajahan, A.N. et al. Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J. Biol. Chem. 279, 20392–20400 (2004).

  21. 21

    McNiven, M.A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).

  22. 22

    Houlard, M. et al. Vav1 is a component of transcriptionally active complexes. J. Exp. Med. 195, 1115–1127 (2002).

  23. 23

    Zugaza, J.L. et al. Structural determinants for the biological activity of Vav proteins. J. Biol. Chem. 277, 45377–45392 (2002).

  24. 24

    Cao, Y. et al. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J. 21, 4809–4819 (2002).

  25. 25

    Costello, P.S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-κB pathways. Proc. Natl. Acad. Sci. USA 96, 3035–3040 (1999).

  26. 26

    Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

  27. 27

    Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J. Biol. Chem. 279, 18239–18246 (2004).

  28. 28

    Schlunck, G. et al. Modulation of Rac localization and function by dynamin. Mol. Biol. Cell 15, 256–267 (2004).

  29. 29

    Seedorf, K. et al. Dynamin binds to SH3 domains of phospholipase C gamma and GRB-2. J. Biol. Chem. 269, 16009–16014 (1994).

  30. 30

    Schaeffer, E.M. et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638–641 (1999).

  31. 31

    Finkelstein, L.D. & Schwartzberg, P.L. Tec kinases: shaping T-cell activation through actin. Trends Cell Biol. 14, 443–451 (2004).

  32. 32

    Schaefer, A.W. et al. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J. Biol. Chem. 274, 37965–37973 (1999).

  33. 33

    Daaka, Y. et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

  34. 34

    Kranenburg, O., Verlaan, I. & Moolenaar, W.H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).

  35. 35

    Panigada, M. et al. Constitutive endocytosis and degradation of the pre-T cell receptor. J. Exp. Med. 195, 1585–1597 (2002).

  36. 36

    Rivero-Lezcano, O.M., Marcilla, A., Sameshima, J.H. & Robbins, K.C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol. Cell. Biol. 15, 5725–5731 (1995).

  37. 37

    Anton, I.M., Lu, W., Mayer, B.J., Ramesh, N. & Geha, R.S. The Wiskott-Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J. Biol. Chem. 273, 20992–20995 (1998).

  38. 38

    Krueger, E.W., Orth, J.D., Cao, H. & McNiven, M.A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).

  39. 39

    Taniuchi, I. et al. Antigen-receptor induced clonal expansion and deletion of lymphocytes are impaired in mice lacking HS1 protein, a substrate of the antigen-receptor-coupled tyrosine kinases. EMBO J. 14, 3664–3678 (1995).

  40. 40

    Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat. Cell Biol. 6, 319–327 (2004).

  41. 41

    Williams, B.L. et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399 (1998).

  42. 42

    Henley, J.R. & McNiven, M.A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775 (1996).

  43. 43

    Henley, J.R., Krueger, E.W., Oswald, B.J. & McNiven, M.A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

  44. 44

    Ting, A.T., Karnitz, L.M., Schoon, R.A., Abraham, R.T. & Leibson, P.J. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-γ1 and PLC-γ2 in natural killer cells. J. Exp. Med. 176, 1751–1755 (1992).

  45. 45

    Billadeau, D.D., Mackie, S.M., Schoon, R.A. & Leibson, P.J. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J. Exp. Med. 192, 381–392 (2000).

  46. 46

    Jevremovic, D. et al. Cutting edge: a role for the adaptor protein LAT in human NK cell-mediated cytotoxicity. J. Immunol. 162, 2453–2456 (1999).

  47. 47

    Trushin, S.A. et al. Protein kinase Cα (PKCα) acts upstream of PKCθ to activate IκB kinase and NF-κB in T lymphocytes. Mol. Cell. Biol. 23, 7068–7081 (2003).

  48. 48

    McKean, D.J. et al. Maturation versus death of developing double-positive thymocytes reflects competing effects on Bcl-2 expression and can be regulated by the intensity of CD28 costimulation. J. Immunol. 166, 3468–3475 (2001).

  49. 49

    Bell, M.P., Huntoon, C.J., Graham, D. & McKean, D.J. The analysis of costimulatory receptor signaling cascades in normal T lymphocytes using in vitro gene transfer and reporter gene analysis. Nat. Med. 7, 1155–1158 (2001).

  50. 50

    Cannon, J.L. et al. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation. Immunity 15, 249–259 (2001).

Download references

Acknowledgements

The authors thank P.J. Leibson for critical reading of the manuscript. Supported by the Mayo Foundation, US National Institutes of Health (AI44959 to D.J.M., and CA47752 to D.D.B.) and Cancer Research Institute (D.D.B.).

Author information

Affiliations

  1. Department of Immunology, Mayo Clinic College of Medicine, Rochester, 55905, Minnesota, USA

    • Timothy S Gomez
    • , Casey M Lubking
    • , David J McKean
    •  & Daniel D Billadeau
  2. Division of Oncology Research Mayo Clinic College of Medicine, Rochester, 55905, Minnesota, USA

    • Michael J Hamann
    • , Doris N Savoy
    • , Michael P Heldebrant
    •  & Daniel D Billadeau
  3. Department of Pathology, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA

    • Sean McCarney
    •  & Janis K Burkhardt
  4. Department of Pathology, University of Chicago, Chicago, 60637, Illinois, USA

    • Christine M Labno
  5. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, 55905, Minnesota, USA

    • Mark A McNiven

Authors

  1. Search for Timothy S Gomez in:

  2. Search for Michael J Hamann in:

  3. Search for Sean McCarney in:

  4. Search for Doris N Savoy in:

  5. Search for Casey M Lubking in:

  6. Search for Michael P Heldebrant in:

  7. Search for Christine M Labno in:

  8. Search for David J McKean in:

  9. Search for Mark A McNiven in:

  10. Search for Janis K Burkhardt in:

  11. Search for Daniel D Billadeau in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Daniel D Billadeau.

Supplementary information

  1. Supplementary Fig. 1

    Dyn2 suppression does not affect proximal TCR signaling events. (PDF 142 kb)

  2. Supplementary Fig. 2

    Verification of the Vav1-Dyn2 interaction. (PDF 101 kb)

  3. Supplementary Fig. 3

    PLCγ1, SLP-76 and Sos1 are effectively recruited to LAT in the absence of Dyn2. (PDF 200 kb)

  4. Supplementary Fig. 4

    Dyn2 requires Vav1 for efficient localization to the IS. (PDF 236 kb)

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/ni1168

Further reading