Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic ontogeny of the Igk locus during B cell development

Abstract

To become accessible for rearrangement, the immunoglobulin κ locus must undergo a series of epigenetic changes. This begins in pro–B cells with the relocation of both immunoglobulin κ alleles from the periphery to the center of the nucleus. In pre–B cells, one allele became preferentially packaged into an active chromatin structure characterized by histone acetylation and methylation of histone H3 lysine 4, while the other allele was recruited to heterochromatin, where it was associated with heterochromatin protein-γ and Ikaros. These events in cis made only one allele accessible to trans-acting factors, such as RelB, which mediated DNA demethylation, to facilitate rearrangement. These results suggest that early B lymphoid epigenetic changes generate differential structures that serve as the basis for allelic exclusion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Igk chain histone H3 modification during cell differentiation.
Figure 2: Nuclear localization of Igk.
Figure 3: Heterochromatinization of Igk.
Figure 4: RelB induces demethylation in late pre–B cells.

Similar content being viewed by others

References

  1. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  2. Bergman, Y., Fisher, A.G. & Cedar, H. Epigenetic mechanisms that regulate antigen receptor gene expression. Curr. Opin. Immunol. 15, 176–181 (2003).

    Article  CAS  Google Scholar 

  3. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  4. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  5. Gellert, M. A new view of V(D)J recombination. Genes Cells 1, 269–275 (1996).

    Article  CAS  Google Scholar 

  6. Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).

    Article  CAS  Google Scholar 

  7. Lewis, S.A. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27–150 (1994).

    Article  CAS  Google Scholar 

  8. Sleckman, B.P., Gorman, J.R. & Alt, F.W. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14, 459–481 (1996).

    Article  CAS  Google Scholar 

  9. Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  Google Scholar 

  10. Brown, K.E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A.G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell 3, 207–217 (1999).

    Article  CAS  Google Scholar 

  11. Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    Article  CAS  Google Scholar 

  12. Mather, E.L. & Perry, R.P. Methylation status and DNaseI sensitivity of immunoglobulin genes: changes associated with rearrangement. Proc. Natl. Acad. Sci. USA 80, 4689–4693 (1983).

    Article  CAS  Google Scholar 

  13. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    Article  CAS  Google Scholar 

  14. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  Google Scholar 

  15. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  Google Scholar 

  16. Maës, J. et al. Chromatin remodeling at the Ig loci prior to V(D)J recombination. J. Immunol. 167, 866–874 (2001).

    Article  Google Scholar 

  17. Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).

    Article  CAS  Google Scholar 

  18. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  Google Scholar 

  19. Kirillov, A. et al. A role for nuclear NF-κB in B-cell-specific demethylation of the Igκ locus. Nat. Genet. 13, 435–441 (1996).

    Article  CAS  Google Scholar 

  20. Rolink, A., Kudo, A., Karasuyama, H., Kikuchi, Y. & Melchers, F. Long-term proliferating early pre-B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  Google Scholar 

  21. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  Google Scholar 

  22. Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat. Cell Biol. 5, 668–674 (2003).

    Article  CAS  Google Scholar 

  23. Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304 (2004).

    Article  CAS  Google Scholar 

  24. Dillon, N. & Festenstein, R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 18, 252–258 (2002).

    Article  CAS  Google Scholar 

  25. Sabbattini, P. et al. Binding of Ikaros to the λ5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J. 20, 2812–2822 (2001).

    Article  CAS  Google Scholar 

  26. Mostoslavsky, R. et al. Demethylation and the establishment of κ allelic exclusion. Cold Spring Harb. Symp. Quant. Biol. 64, 197–206 (1999).

    Article  CAS  Google Scholar 

  27. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nat. Genet. 34, 187–192 (2003).

    Article  CAS  Google Scholar 

  28. Smale, S.T. The establishment and maintenance of lymphocyte identity through gene silencing. Nat. Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  29. Fisher, A.G. & Merkenschlager, M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev. 12, 193–197 (2002).

    Article  CAS  Google Scholar 

  30. Martin, D.J. van Ness, B.G. Initiation and processing of two kappa immunoglobulin germ line transcripts in mouse B cells. Mol. Cell. Biol. 10, 1950–1958 (1990).

    Article  CAS  Google Scholar 

  31. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    Article  CAS  Google Scholar 

  32. Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol. 2, 162–174 (2002).

    Article  CAS  Google Scholar 

  33. Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

    Article  CAS  Google Scholar 

  34. Sun, L., Liu, A. & Georgopoulos, K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 15, 5358–5369 (1996).

    Article  CAS  Google Scholar 

  35. Cobb, B.S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).

    Article  CAS  Google Scholar 

  36. Strom, L., Lundgren, M. & Severinson, E. Binding of Ikaros to germline Ig heavy chain γ1 and ε promoters. Mol. Immunol. 39, 771–782 (2003).

    Article  CAS  Google Scholar 

  37. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  Google Scholar 

  38. Trinh, L.A. et al. Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev. 15, 1817–1832 (2001).

    Article  CAS  Google Scholar 

  39. McBlane, F. & Boyes, J. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10, 483–486 (2000).

    Article  CAS  Google Scholar 

  40. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  41. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).

    Article  CAS  Google Scholar 

  42. Su, R.C. et al. Dynamic assembly of silent chromatin during thymocyte maturation. Nat. Genet. 36, 502–506 (2004).

    Article  CAS  Google Scholar 

  43. Liang, H-E., Hsu, L-Y., Cado, D. & Schlissel, M.S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  Google Scholar 

  44. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  45. Hebbes, T.R., Clayton, A.L., Thorne, A.W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).

    Article  CAS  Google Scholar 

  46. Ji, Y., Zhang, J., Lee, A.I., Cedar, H. & Bergman, Y. A multistep mechanism for the activation of rearrangement in the immune system. Proc. Natl. Acad. Sci. USA 100, 7557–7562 (2003).

    Article  CAS  Google Scholar 

  47. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B-cell specific demethylation: a novel role for the intronic κ-chain enhancer sequence. Cell 76, 913–923 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Wirth (Ulm University, Ulm, Germany) for the RelB expression plasmid, and L. Lande for help in completing this project. Supported by the Israel Academy of Sciences (H.C. and Y.B.), NIH (H.C. and Y.B.), Israel Cancer Research Foundation (H.C.), European Community 5th Framework Quality of Life Program (Y.B.), Wellcome Trust University Award (J.S.) and a Horvitz Fellowship (M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehudit Bergman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Flow cytometric analysis of wild-type pro-B, IL-7–dependent pre-B and ex vivo small pre-B cells. (PDF 119 kb)

Supplementary Fig. 2

Igk rearrangement in pre-B cells. (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldmit, M., Ji, Y., Skok, J. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol 6, 198–203 (2005). https://doi.org/10.1038/ni1154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing