Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1

Abstract

A fine balance between rates of proliferation and apoptosis in the skin provides a defensive barrier and a mechanism for tissue repair after damage. Vγ3+ dendritic epidermal T cells (DETCs) are primary modulators of skin immune responses. Here we show that DETCs both produce and respond to insulin-like growth factor 1 (IGF-1) after T cell receptor stimulation. Mice deficient in DETCs had a notable increase in epidermal apoptosis that was abrogated by the addition of DETCs or IGF-1. Furthermore, DETC-deficient mice had reduced IGF-1 receptor activation at wound sites. These findings indicate critical functions for DETC-mediated IGF-1 production in regulating skin homeostasis and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IGF-1R is expressed by DETCs after TCR stimulation.
Figure 2: DETCs express IGF-1 after TCR stimulation.
Figure 3: DETCs treated with IGF-1 are resistant to apoptosis.
Figure 4: Skin lacking DETCs has increased epidermal apoptosis.
Figure 5: Increased epidermal apoptosis in DETC-deficient skin is prevented by coculture with DETCs or growth factors.
Figure 6: TCRδ-deficient mice have reduced IGF-1R phosphorylation at wound sites.

Similar content being viewed by others

References

  1. Edmondson, S.R., Thumiger, S.P., Werther, G.A. & Wraight, C.J. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr. Rev. 24, 737–764 (2003).

    Article  CAS  Google Scholar 

  2. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. USA 100, 11830–11835 (2003).

    Article  CAS  Google Scholar 

  3. Lew, W., Bowcock, A.M. & Krueger, J.G. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and 'type 1' inflammatory gene expression. Trends Immunol. 25, 295–305 (2004).

    Article  CAS  Google Scholar 

  4. Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med. 195, 855–867 (2002).

    Article  CAS  Google Scholar 

  5. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  Google Scholar 

  6. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  Google Scholar 

  7. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR) γδ+ and TCR αβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003).

    Article  CAS  Google Scholar 

  8. Asarnow, D.M. et al. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

    Article  CAS  Google Scholar 

  9. Havran, W.L., Chien, Y.H. & Allison, J.P. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

    Article  CAS  Google Scholar 

  10. Boismenu, R. & Havran, W.L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    Article  CAS  Google Scholar 

  11. Boismenu, R., Feng, L., Xia, Y.Y., Chang, J.C. & Havran, W.L. Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157, 985–992 (1996).

    CAS  PubMed  Google Scholar 

  12. Silha, J.V. & Murphy, L.J. Insights from insulin-like growth factor binding protein transgenic mice. Endocrinology 143, 3711–3714 (2002).

    Article  CAS  Google Scholar 

  13. Vincent, A.M. & Feldman, E.L. Control of cell survival by IGF signaling pathways. Growth Horm. IGF Res. 12, 193–197 (2002).

    Article  CAS  Google Scholar 

  14. Dorshkind, K. & Horseman, N.D. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr. Rev. 21, 292–312 (2000).

    CAS  PubMed  Google Scholar 

  15. Stentz, F.B. & Kitabchi, A.E. De novo emergence of growth factor receptors in activated human CD4+ and CD8+ T lymphocytes. Metabolism 53, 117–122 (2004).

    Article  CAS  Google Scholar 

  16. DiGiovanni, J. et al. Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res. 60, 1561–1570 (2000).

    CAS  PubMed  Google Scholar 

  17. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  18. Rho, O. et al. Altered expression of insulin-like growth factor I and its receptor during multistage carcinogenesis in mouse skin. Mol. Carcinog. 17, 62–69 (1996).

    Article  CAS  Google Scholar 

  19. Brown, D.L., Kane, C.D., Chernausek, S.D. & Greenhalgh, D.G. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am. J. Pathol. 151, 715–724 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tavakkol, A., Varani, J., Elder, J.T. & Zouboulis, C.C. Maintenance of human skin in organ culture: role for insulin-like growth factor-1 receptor and epidermal growth factor receptor. Arch. Dermatol. Res. 291, 643–651 (1999).

    Article  CAS  Google Scholar 

  21. Kuhn, C., Hurwitz, S.A., Kumar, M.G., Cotton, J. & Spandau, D.F. Activation of the insulin-like growth factor-1 receptor promotes the survival of human keratinocytes following ultraviolet B irradiation. Int. J. Cancer 80, 431–438 (1999).

    Article  CAS  Google Scholar 

  22. Walsh, P.T., Smith, L.M. & O'Connor, R. Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes. Immunology 107, 461–471 (2002).

    Article  CAS  Google Scholar 

  23. Jameson, J.M., Cauvi, G., Witherden, D.A. & Havran, W.L. A keratinocyte-responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172, 3573–3579 (2004).

    Article  CAS  Google Scholar 

  24. Bigby, M. et al. Most γδ T cells develop normally in the absence of MHC class II molecules. J. Immunol. 151, 4465–4475 (1993).

    CAS  PubMed  Google Scholar 

  25. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  26. Koshizuka, S. et al. The beneficial effects of recombinant human insulin-like growth factor-I (IGF-I) on wound healing in severely wounded senescent mice. Surg. Today 27, 946–952 (1997).

    Article  CAS  Google Scholar 

  27. Jeschke, M.G., Schubert, T. & Klein, D. Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R958–R966 (2004).

    Article  CAS  Google Scholar 

  28. Barbieri, M., Bonafe, M., Franceschi, C. & Paolisso, G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 285, E1064–E1071 (2003).

    Article  CAS  Google Scholar 

  29. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCR γδ+ and TCR αβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  Google Scholar 

  30. Brocardo, M.G. et al. Early effects of insulin-like growth factor-1 in activated human T lymphocytes. J. Leukoc. Biol. 70, 297–305 (2001).

    CAS  PubMed  Google Scholar 

  31. Pifer, J., Stephan, R.P., Lill-Elghanian, D.A., Le, P.T. & Witte, P.L. Role of stromal cells and their products in protecting young and aged B-lineage precursors from dexamethasone-induced apoptosis. Mech. Ageing Dev. 124, 207–218 (2003).

    Article  CAS  Google Scholar 

  32. Su, H.-Y. et al. Mouse keratinocytes express c98, a novel gene homologous to bcl-2, that is stimulated by insulin-like growth factor 1 and prevents dexamethasone-induced apoptosis. Biochimica et Biophysica Acta (BBA) - Gene Struct. Exp. 1676, 127–137 (2004).

    Article  CAS  Google Scholar 

  33. Ghofrani, A., Holler, D., Schuhmann, K., Saldern, S. & Messmer, B.J. The influence of systemic growth hormone administration on the healing time of skin graft donor sites in a pig model. Plast. Reconstr. Surg. 104, 470–475 (1999).

    Article  CAS  Google Scholar 

  34. Bitar, M.S. Insulin and glucocorticoid-dependent suppression of the IGF-I system in diabetic wounds. Surgery 127, 687–695 (2000).

    Article  CAS  Google Scholar 

  35. Blakytny, R., Jude, E.B., Martin Gibson, J., Boulton, A.J. & Ferguson, M.W. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J. Pathol. 190, 589–594 (2000).

    Article  CAS  Google Scholar 

  36. Havran, W.L. A role for epithelial γδ T cells in tissue repair. Immunol. Res. 21, 63–69 (2000).

    Article  CAS  Google Scholar 

  37. Guo, L., Yu, Q.C. & Fuchs, E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 12, 973–986 (1993).

    Article  CAS  Google Scholar 

  38. Revest, J.M., Suniara, R.K., Kerr, K., Owen, J.J. & Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167, 1954–1961 (2001).

    Article  CAS  Google Scholar 

  39. Werner, S. et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266, 819–822 (1994).

    Article  CAS  Google Scholar 

  40. Nissley, S.P. & Rechler, M.M. Somatomedin/insulin-like growth factor tissue receptors. Clin. Endocrinol. Metab. 13, 43–67 (1984).

    Article  CAS  Google Scholar 

  41. Finch, P.W., Rubin, J.S., Miki, T., Ron, D. & Aaronson, S.A. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245, 752–755 (1989).

    Article  CAS  Google Scholar 

  42. De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127, 483–492 (2000).

    CAS  PubMed  Google Scholar 

  43. Guo, L., Degenstein, L. & Fuchs, E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 10, 165–175 (1996).

    Article  CAS  Google Scholar 

  44. Kecha, O. et al. Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology 141, 1209–1217 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Barcas and A. Mayday provided technical assistance, and M. Carson, H.K. Komori, T. Meehan, D. Page and D. Witherden provided critical reading of the manuscript. Supported by the Leukemia and Lymphoma Society and National Institutes of Health (T32AI07244 and AI36964). This is manuscript number 16741-IMM from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy L Havran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, L., Jameson, J., Cauvi, G. et al. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6, 73–79 (2005). https://doi.org/10.1038/ni1152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing