Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86

Abstract

Bidirectional signaling along the B7–CTLA-4 coreceptor pathway enables reciprocal conditioning of T cells and dendritic cells. Although T cells can instruct dendritic cells to manifest tolerogenic properties after CTLA-4 engagement of B7, such a B7-mediated signaling is not known to occur in response to CD28. Here we show that mouse dendritic cells were induced by soluble CD28 to express interleukin 6 and interferon-γ. Production of interleukin 6 required B7-1 (CD80), B7-2 (CD86) and p38 mitogen-activated protein kinase and prevented interferon-γ-driven expression of immunosuppressive tryptophan catabolism. In vivo, an adjuvant activity of soluble CD28 was demonstrated as enhanced T cell-mediated immunity to tumor and self peptides and protection against microbial and tumor challenge. Thus, different ligands of B7 can signal dendritic cells to express functionally distinct effector responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow cytometry assessing the binding of CD28-Ig to cell transfectants and splenic DCs.
Figure 2: Cytokine production by DCs in vitro in response to CD28-Ig, CTLA-4–Ig or membrane-anchored CD28.
Figure 3: Cytokine induction by CD28-Ig requires B7 expression and p38 signaling.
Figure 4: CD28-Ig, CTLA-4–Ig and CD28 transfectants activate NF-κB- and MAPK-dependent transcription in B7-expressing DCs.
Figure 5: IL-6 has a dominant function in the effects of CD28-Ig in vitro.
Figure 6: CD28-Ig triggers IL-6-dependent adjuvant properties in B7-expressing DCs.
Figure 7: CD28-Ig and CTLA-4–Ig have disparate effects on DC ability to initiate immunity to C. albicans in vivo.
Figure 8: CD28-Ig interferes with CD4+CD25+ TR cell suppression in tumor-bearing mice.

Similar content being viewed by others

References

  1. Schwartz, R.H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  CAS  Google Scholar 

  2. Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  3. Egen, J.G., Kuhns, M.S. & Allison, J.P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3, 611–618 (2002).

    Article  CAS  Google Scholar 

  4. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    Article  CAS  Google Scholar 

  5. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  Google Scholar 

  6. Kondo, S., Kooshesh, F., Wang, B., Fujisawa, H. & Sauder, D.N. Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28−/− mice. J. Immunol. 157, 4822–4829 (1996).

    CAS  PubMed  Google Scholar 

  7. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  Google Scholar 

  8. Sansom, D.M., Manzotti, C.N. & Zheng, Y. What's the difference between CD80 and CD86? Trends Immunol. 24, 314–319 (2003).

    Article  CAS  Google Scholar 

  9. Lohr, J., Knoechel, B., Jiang, S., Sharpe, A.H. & Abbas, A.K. The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat. Immunol. 4, 664–669 (2003).

    Article  CAS  Google Scholar 

  10. Fallarino, F., Fields, P.E. & Gajewski, T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 188, 205–210 (1998).

    Article  CAS  Google Scholar 

  11. Thompson, C.B. & Allison, J.P. The emerging role of CTLA-4 as an immune attenuator. Immunity 7, 445–450 (1997).

    Article  CAS  Google Scholar 

  12. Oosterwegel, M.A., Greenwald, R.J., Mandelbrot, D.A., Lorsbach, R.B. & Sharpe, A.H. CTLA-4 and T cell activation. Curr. Opin. Immunol. 11, 294–300 (1999).

    Article  CAS  Google Scholar 

  13. Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220–228 (2001).

    Article  CAS  Google Scholar 

  14. Finger, E.B. & Bluestone, J.A. When ligand becomes receptor—tolerance via B7 signaling on DCs. Nat. Immunol. 3, 1056–1057 (2002).

    Article  CAS  Google Scholar 

  15. Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  Google Scholar 

  16. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    Article  CAS  Google Scholar 

  17. Grohmann, U., Fallarino, F. & Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24, 242–248 (2003).

    Article  CAS  Google Scholar 

  18. Linsley, P.S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  CAS  Google Scholar 

  19. Lanier, L.L. et al. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154, 97–105 (1995).

    CAS  PubMed  Google Scholar 

  20. Grohmann, U. et al. IL-6 inhibits the tolerogenic function of CD8α+ dendritic cells expressing indoleamine 2,3-dioxygenase. J. Immunol. 167, 708–714 (2001).

    Article  CAS  Google Scholar 

  21. Mann, J., Oakley, F., Johnson, P.W. & Mann, D.A. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-κB, and CBF1. J. Biol. Chem. 277, 17125–17138 (2002).

    Article  CAS  Google Scholar 

  22. Saccani, S., Pantano, S. & Natoli, G. Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med. 193, 1351–1359 (2001).

    Article  CAS  Google Scholar 

  23. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol. 3, 69–75 (2002).

    Article  CAS  Google Scholar 

  24. Grohmann, U. et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J. Immunol. 166, 277–283 (2001).

    Article  CAS  Google Scholar 

  25. Grohmann, U. et al. Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J. Immunol. 171, 2581–2587 (2003).

    Article  CAS  Google Scholar 

  26. Croker, B.A. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat. Immunol. 4, 540–545 (2003).

    Article  CAS  Google Scholar 

  27. Lang, R. et al. SOCS3 regulates the plasticity of gp130 signaling. Nat. Immunol. 4, 546–550 (2003).

    Article  CAS  Google Scholar 

  28. Yasukawa, H. et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat. Immunol. 4, 551–556 (2003).

    Article  CAS  Google Scholar 

  29. Johnston, J.A. & O'Shea, J.J. Matching SOCS with function. Nat. Immunol. 4, 507–509 (2003).

    Article  CAS  Google Scholar 

  30. Shortman, K. & Heath, W.R. Immunity or tolerance? That is the question for dendritic cells. Nat. Immunol. 2, 988–989 (2001).

    Article  CAS  Google Scholar 

  31. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    Article  CAS  Google Scholar 

  32. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  33. Medzhitov, R. & Janeway, C. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  Google Scholar 

  34. Puccetti, P., Romani, L. & Bistoni, F. A TH1-TH2-like switch in candidiasis: new perspectives for therapy. Trends Microbiol. 3, 237–240 (1995).

    Article  CAS  Google Scholar 

  35. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 4, 1–23 (2004).

    Article  Google Scholar 

  36. Romani, L. et al. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183, 1345–1355 (1996).

    Article  CAS  Google Scholar 

  37. d'Ostiani, C.F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  Google Scholar 

  38. Fallarino, F. et al. Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J. Immunol. 165, 5495–5501 (2000).

    Article  CAS  Google Scholar 

  39. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  40. Yang, Y., Huang, C.-T., Huang, X. & Pardoll, D.M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell–mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004).

    Article  CAS  Google Scholar 

  41. Rothstein, D.M. & Sayegh, M.H. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol. Rev. 196, 85–108 (2003).

    Article  CAS  Google Scholar 

  42. Azzi, M. β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406–11411 (2003).

    Article  CAS  Google Scholar 

  43. Andres, P.G . et al. Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. Nat. Immunol. 5, 435–442 (2004).

    Article  CAS  Google Scholar 

  44. Chen, C.Y., Cordeaux, Y., Hill, S.J. & King, J.R. Modelling of signalling via G-protein coupled receptors: pathway-dependent agonist potency and efficacy. Bull. Math. Biol. 65, 933–958 (2003).

    Article  CAS  Google Scholar 

  45. Nishibori, T., Tanabe, Y., Su, L. & David, M. Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease. J. Exp. Med. 199, 25–34 (2004).

    Article  CAS  Google Scholar 

  46. Bour-Jordan, H. & Bluestone, J.A. CD28 function: a balance of costimulatory and regulatory signals. J. Clin. Immunol. 22, 1–7 (2002).

    Article  CAS  Google Scholar 

  47. Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19, 877–889 (2003).

    Article  CAS  Google Scholar 

  48. Montagnoli, C. et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol. 169, 6298–6308 (2002).

    Article  CAS  Google Scholar 

  49. Bellocchio, S. et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069 (2004).

    Article  CAS  Google Scholar 

  50. Belladonna, M.L. et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J. Immunol. 168, 5448–5454 (2002).

    Article  CAS  Google Scholar 

  51. Gajewski, T.F., Fallarino, F., Uyttenhove, C. & Boon, T. Tumor rejection requires a CTLA-4 ligand provided by the host or expressed on the tumor: superiority of B7-1 over B7-2 for active tumor immunization. J. Immunol. 156, 2909–2917 (1996).

    CAS  PubMed  Google Scholar 

  52. Grohmann, U. et al. IFN-γ inhibits presentation of a tumor/self peptide by CD8α dendritic cells via potentiation of the CD8α+ subset. J. Immunol. 165, 1357–1363 (2000).

    Article  CAS  Google Scholar 

  53. Richard, M., Louahed, J., Demoulin, J.B. & Renauld, J.C. Interleukin-9 regulates NF-κB activity through BCL3 gene induction. Blood 93, 4318–4327 (1999).

    CAS  PubMed  Google Scholar 

  54. Grohmann, U. et al. CD8+ cell activation to a major mastocytoma rejection antigen, P815AB: requirement for tum or helper peptides in priming for skin test reactivity to a P815AB-related peptide. Eur. J. Immunol. 25, 2797–2802 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Poli (University of Turin, Turin, Italy) for the gift of IL-6-deficient mice and G. Andrielli for technical assistance. Supported by the Italian Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Puccetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CD28-Ig given in vivo initiates tumor-specific immunity. (PDF 29 kb)

Supplementary Fig. 2

Characterization of CD28-Ig fusion protein. (PDF 43 kb)

Supplementary Fig. 3

Cytofluorometric analysis of Jurkat cells stained with anti-CD28. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orabona, C., Grohmann, U., Belladonna, M. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5, 1134–1142 (2004). https://doi.org/10.1038/ni1124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing