Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GA binding protein regulates interleukin 7 receptor α-chain gene expression in T cells

This article has been updated

Abstract

The interleukin 7 receptor α-chain (IL-7Rα) is essential for T cell development in both humans and mice and for B cell development in mice. Whereas the transcription factor PU.1 regulates IL-7Rα expression in mouse pro–B cells via a GGAA motif, we demonstrate here that GA binding protein (GABP) bound to this site and was essential in the regulation of IL-7Rα expression in T cells, where PU.1 is not expressed. Moreover, IL-7Rα expression was diminished substantially in thymocytes but was normal on B220+ fetal liver cells from mouse embryos with diminished expression of GABPα. Thus, GABP is essential for the regulation of IL-7Rα expression in T cells, and the differential regulation of IL-7Rα in distinct lymphoid lineages is achieved at least in part by differential recruitment of factors to the same GGAA motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a DNase I–hypersensitive site and mapping of a major Il7r transcription initiation site.
Figure 2: Identification of an essential GGAA motif in the 5′ regulatory region of Il7r.
Figure 3: Identification of proteins binding to the GGAA motif in the Il7r promoter.
Figure 4: Suppression of IL-7Rα expression in T cells by siRNA targeting GABPα and GABPβ.
Figure 5: Characterization of Gabpa-trapped embryonic stem cells.
Figure 6: Diminished IL-7Rα expression in double-negative thymocytes but not B cell progenitors in Gabpatp/tp embryos.

Similar content being viewed by others

Change history

  • 12 September 2004

    added footnote to XML; appended incorrect AOP PDF with note; added notes in xml for all Fig 4 instances; corrected online date will be added to issue version

Notes

  1. *Note: In the version of this article originally published online, some of the gene names in Figure 4 and the Figure 4 legend were incorrect. These errors have been corrected for the HTML and print versions of this article.

References

  1. Leonard, W.J. Cytokines and immunodeficiency diseases. Nat. Rev. Immunol. 1, 200–208 (2001).

    Article  CAS  Google Scholar 

  2. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59–64 (2000).

    Article  CAS  Google Scholar 

  3. Park, L.S. et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–670 (2000).

    Article  CAS  Google Scholar 

  4. Fry, T.J. & Mackall, C.L. Interleukin-7: from bench to clinic. Blood 99, 3892–3904 (2002).

    Article  CAS  Google Scholar 

  5. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    Article  CAS  Google Scholar 

  6. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article  CAS  Google Scholar 

  7. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 5, 426–432 (2000).

    Article  Google Scholar 

  8. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4, 680–686 (2003).

    Article  CAS  Google Scholar 

  9. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naïve T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  10. Akashi, K., Traver, D., Kondo, M. & Weissman, I.L. Lymphoid development from hematopoietic stem cells. Int. J. Hematol. 69, 217–226 (1999).

    CAS  PubMed  Google Scholar 

  11. Akashi, K., Kondo, M. & Weissman, I.L. Two distinct pathways of positive selection for thymocytes. Proc. Natl. Acad. Sci. USA 95, 2486–2491 (1998).

    Article  CAS  Google Scholar 

  12. Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci. USA 90, 9125–9129 (1993).

    Article  CAS  Google Scholar 

  13. Xue, H.-H. et al. IL-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 13759–13764 (2002).

    Article  CAS  Google Scholar 

  14. Hu, H. et al. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nat. Immunol. 2, 705–710 (2001).

    Article  CAS  Google Scholar 

  15. Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell. Biol. 2, 827–837 (2001).

    Article  CAS  Google Scholar 

  16. Pleiman, C.M. et al. Organization of the murine and human interleukin-7 receptor genes: two mRNAs generated by differential splicing and presence of a type I-interferon-inducible promoter. Mol. Cell. Biol. 11, 3052–3059 (1991).

    Article  CAS  Google Scholar 

  17. DeKoter, R.P., Lee, H.-J. & Singh, H. PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–300 (2002).

    Article  CAS  Google Scholar 

  18. Anderson, M.K., Hernandez-Hoyos, G., Diamond, R.A. & Rothenberg, E.V. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126, 3131–3148 (1999).

    CAS  PubMed  Google Scholar 

  19. Schaeffer, L., de Kerchove d'Exaerde, A. & Changeux, J.P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).

    Article  CAS  Google Scholar 

  20. Batchelor, A.H., Piper, D.E., de la Brousse, F.C., McKnight, S.L. & Wolberger, C. The structure of GABPα/β: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science 279, 1037–1041 (1998).

    Article  CAS  Google Scholar 

  21. Thompson, C.C., Brown, T.A. & McKnight, S.L. Convergence of Ets- and notch-related structural motifs in a heteromeric DNA binding complex. Science 253, 762–768 (1991).

    Article  CAS  Google Scholar 

  22. LaMarco, K., Thompson, C.C., Byers, B.P., Walton, E.M. & McKnight, S.L. Identification of Ets- and notch-related subunits in GA binding protein. Science 253, 789–792 (1991).

    Article  CAS  Google Scholar 

  23. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  Google Scholar 

  24. Wurster, A.L., Siu, G., Leiden, J.M. & Hedrick, S.M. Elf-1 binds to a critical element in a second CD4 enhancer. Mol. Cell. Biol. 14, 6452–6463 (1994).

    Article  CAS  Google Scholar 

  25. John, S. et al. Regulation of cell-type-specific interleukin-2 receptor α-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-κB family proteins. Mol. Cell. Biol. 15, 1786–1796 (1995).

    Article  CAS  Google Scholar 

  26. Gugneja, S., Virbasius, J.V. & Scarpulla, R.C. Four structurally distinct non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain. Mol. Cell. Biol. 15, 102–111 (1995).

    Article  CAS  Google Scholar 

  27. Skarnes, W.C., Moss, J.E., Herltley, S.M. & Beddington, R.S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).

    Article  CAS  Google Scholar 

  28. Penit, C. & Vasseur, F. Cell proliferation and differentiation in the fetal and early postnatal mouse thymus. J. Immunol. 142, 3369–3377 (1989).

    CAS  PubMed  Google Scholar 

  29. Kincade, P.M. Formation of B lymphocytes in fetal and adult life. Adv. Immunol. 31, 177–245 (1981).

    Article  CAS  Google Scholar 

  30. Ristevski, S. et al. The ETS transcription factor GABPα is essential for early embryogenesis. Mol. Cell. Biol. 24, 5844–5849 (2004).

    Article  CAS  Google Scholar 

  31. Kodandapani, R. et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380, 456–460 (1996).

    Article  CAS  Google Scholar 

  32. Graves, B.J. Inner workings of a transcription factor partnership. Science 279, 1000–1002 (1998).

    Article  CAS  Google Scholar 

  33. Fromm, L. & Burden, S.J. Synapse-specific and neuregulin-induced transcription require an Ets site that binds GABPα/GABPβ. Genes Dev. 12, 3074–3083 (1998).

    Article  CAS  Google Scholar 

  34. Schaeffer, L., Duclert, N., Huchet-Dymanus, M. & Changeux, J.P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 17, 3078–3090 (1998).

    Article  CAS  Google Scholar 

  35. Khurana, T.S. et al. Activation of utrophin promoter by heregulin via the ets-related transcription factor complex GA-binding protein α/β. Mol. Biol. Cell 10, 2075–2086 (1999).

    Article  CAS  Google Scholar 

  36. Gyrd-Hansen, M., Krag, T.O., Rosmarin, A.G. & Khurana, T.S. Sp1 and the ets-related transcription factor complex GABP α/β functionally cooperate to activate the utrophin promoter. J. Neurol. Sci. 197, 27–35 (2002).

    Article  CAS  Google Scholar 

  37. Bartel, F.O., Higuchi, T. & Spyropoulos, D.D. Mouse models in the study of the Ets family of transcription factors. Oncogene 19, 6443–6454 (2000).

    Article  CAS  Google Scholar 

  38. Muthusamy, N., Barton, K. & Leiden, J.M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377, 639–642 (1995).

    Article  CAS  Google Scholar 

  39. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  40. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  Google Scholar 

  41. Spain, L.M., Guerriero, A., Kunjibettu, S. & Scott, E.W. T cell development in PU.1-deficient mice. J. Immunol. 163, 2681–2687 (1999).

    CAS  PubMed  Google Scholar 

  42. Anderson, M.K., Weiss, A.H., Hernandez-Hoyos, G., Dionne, C.J. & Rothenberg, E.V. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16, 285–296 (2002).

    Article  CAS  Google Scholar 

  43. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  44. Kim, H.P., Kelly, J. & Leonard, W.J. The basis for IL-2-induced IL-2 receptor α chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15, 159–172 (2001).

    Article  CAS  Google Scholar 

  45. Lin, J.X., Bhat, N.K., John, S., Queale, W.S. & Leonard, W.J. Characterization of the human interleukin-2 receptor β-chain gene promoter: regulation of promoter activity by ets gene products. Mol. Cell. Biol. 13, 6201–6210 (1993).

    Article  CAS  Google Scholar 

  46. Hemat, F. & McEntee, K. A rapid and efficient PCR-based method for synthesizing high-molecular-weight multimers of oligonucleotides. Biochem. Biophys. Res. Commun. 205, 475–481 (1994).

    Article  CAS  Google Scholar 

  47. Liu, R. et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106, 309–318 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ashwell, S. Durum, K. Jeang, H. Kim, J. Lin, A. Singer, R. Sploski, H. Young and K. Zhao (National Institutes of Health) for suggestions; K. Keyvanfar (National Institutes of Health) for help with cell sorting; K. Cui (National Institutes of Health) for help with optimization of chromatin immunoprecipitation conditions; J. Flores (National Institutes of Health) for help with timed mating of heterozygous 'Gabpa-trapped' mice; and Y. Shi (Harvard Medical School) for providing the pBS/U6 vector. Supported by National Institutes of Health (Intramural Research Training Award, 2002, R.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren J Leonard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of antisera to GABPa and GABPb1. (JPG 91 kb)

Supplementary Fig. 2

Partially retained IL-7Ra expression of Gabpatp/tp DN thymocytes. (JPG 256 kb)

Supplementary Table 1

Target sequences for siRNA (PDF 50 kb)

Supplementary Table 2

Primers for Chromatin immunoprecipitation (PDF 57 kb)

Supplementary Table 3

Primers for RT-PCR (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, HH., Bollenbacher, J., Rovella, V. et al. GA binding protein regulates interleukin 7 receptor α-chain gene expression in T cells. Nat Immunol 5, 1036–1044 (2004). https://doi.org/10.1038/ni1117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing