Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toll-like receptors in the pathogenesis of human disease

Abstract

Members of the Toll-like receptor (TLR) family are key regulators of both innate and adaptive immune responses. The function of TLRs in various human diseases has been investigated by comparison of the incidence of disease among people having different polymorphisms in genes that participate in TLR signaling. These studies have shown that TLR function affects several diseases, including sepsis, immunodeficiencies, atherosclerosis and asthma. As this body of data grows, it will provide new insights into disease pathogenesis as well as valuable information on the merits of various therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR signaling.
Figure 2: Polymorphisms of TLR signaling molecules and their association with human disease.

Similar content being viewed by others

References

  1. Arbour, N.C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    Article  CAS  Google Scholar 

  2. Wenzel, R.P. Anti-endotoxin monoclonal antibodies—a second look. N. Engl. J. Med. 326, 1151–1153 (1992).

    Article  CAS  Google Scholar 

  3. Agnese, D.M. et al. Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of Gram-negative infections. J. Infect. Dis. 186, 1522–1525 (2002).

    Article  CAS  Google Scholar 

  4. Lorenz, E., Mira, J., Frees, K. & Schwartz, D. Relevance of mutations in the TLR4 receptor in patients with Gram negative septic shock. Arch. Int. Med. 162, 1028–1032 (2002).

    Article  CAS  Google Scholar 

  5. Child, N.J. et al. Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem. Soc. Trans. 31, 652–653 (2003).

    Article  CAS  Google Scholar 

  6. Smirnova, I. et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl. Acad. Sci. USA 100, 6075–6080 (2003).

    Article  CAS  Google Scholar 

  7. Read, R.C. et al. A functional polymorphism of Toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J. Infect. Dis. 184, 640–642 (2001).

    Article  CAS  Google Scholar 

  8. Feterowski, C. et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109, 426–431 (2003).

    Article  CAS  Google Scholar 

  9. Lorenz, E., Mira, J., Cornish, K., Arbour, N. & Schwartz, D. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun. 68, 6398–6401 (2000).

    Article  CAS  Google Scholar 

  10. Ogus, A.C. et al. The Arg753GIn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23, 219–223 (2004).

    Article  CAS  Google Scholar 

  11. Bochud, P.Y., Hawn, T.R. & Aderem, A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 170, 3451–3454 (2003).

    Article  CAS  Google Scholar 

  12. Kang, T.J. & Chae, G.T. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31, 53–58 (2001).

    Article  CAS  Google Scholar 

  13. Ben-Ali, M., Barbouche, M.R., Bousnina, S., Chabbou, A. & Dellagi, K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol. 11, 625–6 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  Google Scholar 

  15. Medvedev, A.E. et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med. 198, 521–531 (2003).

    Article  CAS  Google Scholar 

  16. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004).

    Article  CAS  Google Scholar 

  17. Medvedev, A.E., Lentschat, A., Wahl, L.M., Golenbock, D.T. & Vogel, S.N. Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J. Immunol. 169, 5209–5216 (2002).

    Article  Google Scholar 

  18. Escoll, P. et al. Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocytes isolated from septic patients. Biochem. Biophys. Res. Commun. 311, 465–472 (2003).

    Article  CAS  Google Scholar 

  19. Hotchkiss, R.S. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 166, 6952–6963 (2001).

    Article  CAS  Google Scholar 

  20. Tinsley, K.W. et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J. Immunol. 171, 909–914 (2003).

    Article  CAS  Google Scholar 

  21. Bannerman, D.D., Tupper, J.C., Erwert, R.D., Winn, R.K. & Harlan, J.M. Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1. J. Biol. Chem. 277, 8048–8053 (2002).

    Article  CAS  Google Scholar 

  22. Bannerman, D.D., Erwert, R.D., Winn, R.K. & Harlan, J.M. TIRAP mediates endotoxin-induced NF-κB activation and apoptosis in endothelial cells. Biochem. Biophys. Res. Commun. 295, 157–162 (2002).

    Article  CAS  Google Scholar 

  23. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000).

    Article  CAS  Google Scholar 

  24. Puel, A., Picard, C., Ku, C.L., Smahi, A. & Casanova, J.L. Inherited disorders of NF-κB-mediated immunity in man. Curr. Opin. Immunol. 16, 34–41 (2004).

    Article  CAS  Google Scholar 

  25. Orange, J.S. et al. Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations. J. Clin. Invest. 109, 1501–1509 (2002).

    Article  CAS  Google Scholar 

  26. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  Google Scholar 

  27. Jain, A. et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat. Immunol. 2, 223–228 (2001).

    Article  CAS  Google Scholar 

  28. Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

    Article  CAS  Google Scholar 

  29. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    Article  CAS  Google Scholar 

  30. Ameziane, N. et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler. Thromb. Vasc. Biol. 23, e61–64 (2003).

    Article  Google Scholar 

  31. Boekholdt, S.M. et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 107, 2416–2421 (2003).

    Article  CAS  Google Scholar 

  32. Leinonen, M. & Saikku, P. Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect. Dis. 2, 11–17 (2002).

    Article  Google Scholar 

  33. Bulut, Y. et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168, 1435–1440 (2002).

    Article  CAS  Google Scholar 

  34. Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416–421 (2004).

    Article  Google Scholar 

  35. Xu, X.H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    Article  CAS  Google Scholar 

  36. Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat. Med. 9, 1484–1490 (2003).

    Article  CAS  Google Scholar 

  37. Michel, O. et al. Severity of asthma is related to endotoxin in house dust. Am. J. Respir. Crit. Care Med. 154, 1641–1646 (1996).

    Article  CAS  Google Scholar 

  38. Michel, O., Duchateau, J. & Sergysels, R. Effect of inhaled endotoxin on bronchial reactivity in asthmatic and normal subjects. J. Appl. Physiol. 66, 1059–1064 (1989).

    Article  CAS  Google Scholar 

  39. Braun-Fahrlander, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).

    Article  Google Scholar 

  40. Gehring, U., Bischof, W., Fahlbusch, B., Wichmann, H.E. & Heinrich, J. House dust endotoxin and allergic sensitization in children. Am. J. Respir. Crit. Care Med. 166, 939–944 (2002).

    Article  Google Scholar 

  41. Raby, B.A. et al. Polymorphisms in toll-like receptor 4 are not associated with asthma or atopy-related phenotypes. Am. J. Respir. Crit. Care Med. 166, 1449–1456 (2002).

    Article  Google Scholar 

  42. Werner, M. et al. TLR4 gene variants modify endotoxin effects on asthma. J. Allergy Clin. Immunol. 112, 323–330 (2003).

    Article  CAS  Google Scholar 

  43. Yang, I.A. et al. Toll-like receptor 4 polymorphism and severity of atopy in asthmatics. Genes Immun. 5, 41–45 (2004).

    Article  CAS  Google Scholar 

  44. Higgins, S.C. et al. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J. Immunol. 171, 3119–3127 (2003).

    Article  CAS  Google Scholar 

  45. Caramalho, I. et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    Article  CAS  Google Scholar 

  46. Donnelly, J.J., Deck, R.R. & Liu, M.A. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine. J. Immunol. 145, 3071–3079 (1990).

    CAS  PubMed  Google Scholar 

  47. Latz, E., Franko, J., Golenbock, D.T. & Schreiber, J.R. Haemophilus influenzae type b-outer membrane protein complex glycoconjugate vaccine induces cytokine production by engaging human toll-like receptor 2 (TLR2) and requires the presence of TLR2 for optimal immunogenicity. J. Immunol. 172, 2431–2438 (2004).

    Article  CAS  Google Scholar 

  48. Jiang, W. & Pisetsky, D.S. Enhancing immunogenicity by CpG DNA. Curr. Opin. Mol. Ther. 5, 180–185 (2003).

    CAS  PubMed  Google Scholar 

  49. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  Google Scholar 

  50. Hahn, B.H. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368 (1998).

    Article  CAS  Google Scholar 

  51. Gursel, I. et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J. Immunol. 171, 1393–1400 (2003).

    Article  CAS  Google Scholar 

  52. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  53. Viglianti, G.A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 19, 837–847 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the National Institute of Environmental Health Sciences (ES11375, ES07498, ES012496 and ES011961), the National Heart Lung and Blood Institute (HL66604 and HL66611) and the Department of Veterans' Affairs (Merit Review).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald N Cook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, D., Pisetsky, D. & Schwartz, D. Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975–979 (2004). https://doi.org/10.1038/ni1116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing