Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toll-like receptor control of the adaptive immune responses

Abstract

Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms. Toll-like receptors (TLRs) have recently emerged as a key component of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses. TLRs activate multiple steps in the inflammatory reactions that help to eliminate the invading pathogens and coordinate systemic defenses. In addition, TLRs control multiple dendritic cell functions and activate signals that are critically involved in the initiation of adaptive immune responses. Recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: DC populations express nonoverlapping sets of TLRs.
Figure 2: DC subset distribution and migration in vivo.

References

  1. 1

    Janeway, C.A. Jr. & Medzhitov, R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349–350 (1998).

    PubMed  Article  Google Scholar 

  2. 2

    Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis, E.S.C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101, 5598–5603 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Matsumoto, M. et al. Subcellular localization of toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Laudanna, C., Kim, J.Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Mantovani, A. The chemokine system: redundancy for robust outputs. Immunol. Today 20, 254–257 (1999).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Hayashi, F., Means, T.K. & Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660–2669 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Neufert, C. et al. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation. J. Immunol. 167, 1542–1549 (2001).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Hornung, V. et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Nagase, H. et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 171, 3977–3982 (2003).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    McCurdy, J.D., Olynych, T.J., Maher, L.H. & Marshall, J.S. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J. Immunol. 170, 1625–1629 (2003).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Supajatura, V. et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 167, 2250–2256 (2001).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Fan, J. & Malik, A.B. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat. Med. 9, 315–321 (2003).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Ashkar, A.A., Bauer, S., Mitchell, W.J., Vieira, J. & Rosenthal, K.L. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol. 77, 8948–8956 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Kagnoff, M.F. & Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100, 6–10 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Hertz, C.J. et al. Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J. Immunol. 171, 6820–6826 (2003).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Andonegui, G. et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Invest. 111, 1011–1020 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Schilling, J.D., Martin, S.M., Hung, C.S., Lorenz, R.G. & Hultgren, S.J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 4203–4208 (2003).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950 (2001).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Palliser, D., Ploegh, H. & Boes, M. Myeloid differentiation factor 88 is required for cross-priming in vivo. J. Immunol. 172, 3415–3421 (2004).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Ito, T. et al. Interferon-α and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195, 1507–1512 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Visintin, A. et al. Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166, 249–255 (2001).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Muzio, M. et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998–6004 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Edwards, A.D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Doxsee, C.L. et al. The immune response modifier and Toll-like receptor 7 agonist S-27609 selectively induces IL-12 and TNF-α production in CD11c+CD11b+CD8 dendritic cells. J. Immunol. 171, 1156–1163 (2003).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Krug, A. et al. Herpes simplex virus type 1 (HSV-1) activates murine natural interferon-producing cells (IPC) through Toll-like receptor 9. Blood 103, 1433–1437 (2003).

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Dieu, M.C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Constant, S.L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Bourgeois, C., Veiga-Fernandes, H., Joret, A.M., Rocha, B. & Tanchot, C. CD8 lethargy in the absence of CD4 help. Eur. J. Immunol. 32, 2199–2207 (2002).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    CAS  Article  Google Scholar 

  59. 59

    Yang, Y., Huang, C.T., Huang, X. & Pardoll, D.M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Kaisho, T. et al. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int. Immunol. 14, 695–700 (2002).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Redecke, V. et al. Cutting edge: Activation of toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J. Immunol. 172, 2739–2743 (2004).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Pulendran, B. et al. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 167, 5067–5076 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171, 4984–4989 (2003).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Eisenbarth, S.C. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Katze, M.G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Taniguchi, T. & Takaoka, A. The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14, 111–116 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Tough, D.F., Sun, S., Zhang, X. & Sprent, J. Stimulation of naive and memory T cells by cytokines. Immunol. Rev. 170, 39–47 (1999).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Nguyen, K.B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Sareneva, T., Matikainen, S., Kurimoto, M. & Julkunen, I. Influenza A virus-induced IFN-α/β and IL-18 synergistically enhance IFN-γ gene expression in human T cells. J. Immunol. 160, 6032–6038 (1998).

    CAS  PubMed  Google Scholar 

  71. 71

    Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  72. 72

    Le Bon, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 4, 1009–1015 (2003).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Le Bon, A. et al. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470 (2001).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. & Salazar-Mather, T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Hoshino, K., Kaisho, T., Iwabe, T., Takeuchi, O. & Akira, S. Differential involvement of IFN-β in Toll-like receptor-stimulated dendritic cell activation. Int. Immunol. 14, 1225–1231 (2002).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Honda, K. et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. USA 100, 10872–10877 (2003).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Smith, C.M. et al. Cutting Edge: Conventional CD8α+ Dendritic Cells Are Preferentially Involved in CTL Priming After Footpad Infection with Herpes Simplex Virus-1. J. Immunol. 170, 4437–4440 (2003).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Belz, G.T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Maldonado, L.R. et al. CD8α+ and CD8α- Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  Google Scholar 

  84. 84

    Iwasaki, A. & Kelsall, B.L. Unique functions of CD11b+, CD8 α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Akbari, O., DeKruyff, R.H. & Umetsu, D.T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2, 725–731 (2001).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Alpan, O. Oral tolerance and gut-oriented immune response to dietary proteins. Curr. Allergy Asthma Rep. 1, 572–577 (2001).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Zhao, X. et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197, 153–162 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Randolph, G.J. Is maturation required for Langerhans cell migration? J. Exp. Med. 196, 413–416 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Geissmann, F. et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med. 196, 417–430 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Valladeau, J. et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J. Immunol. 168, 782–792 (2002).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167, 741–748 (2001).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Anjuere, F. et al. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590–598 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Itano, A.A. et al. Distinct dendritic cell populations sequentially present a subcutaneous antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity (in the press).

  97. 97

    Filippi, C. et al. CD4+ T cell polarization in mice is modulated by strain-specific MHC-independent differences within dendritic cells. J. Exp. Med. 198, 201–209 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Lambrecht, B.N. & Hammad, H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat. Rev. Immunol. 3, 994–1003 (2003).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Akbari, O., Stock, P., DeKruyff, R.H. & Umetsu, D.T. Mucosal tolerance and immunity: regulating the development of allergic disease and asthma. Int. Arch. Allergy Immunol. 130, 108–118 (2003).

    PubMed  Article  Google Scholar 

  102. 102

    Legge, K.L. & Braciale, T.J. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18, 265–277 (2003).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Dahl, M.E., Dabbagh, K., Liggitt, D., Kim, S. & Lewis, D.B. Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nat. Immunol. 5, 337–343 (2004).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Randolph, G.J., Beaulieu, S., Lebecque, S., Steinman, R.M. & Muller, W.A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Brawand, P. et al. Murine plasmacytoid pre-dendritic cells generated from flt3 ligand-supplemented bone marrow cultures are immature APCs. J. Immunol. 169, 6711–6719 (2002).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent Th1 polarization. Nat. Immunol. 4, 305–310 (2000).

    Article  CAS  Google Scholar 

  112. 112

    Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–390 (2002).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Gilliet, M. & Liu, Y.J. Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells. Hum. Immunol. 63, 1149–1155 (2002).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Filippi, C. et al. CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J. Exp. Med. 198, 201–209 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Martin, F. & Kearney, J.F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Rui, L., Vinuesa, C.G., Blasioli, J. & Goodnow, C.C. Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nat. Immunol. 4, 594–600 (2003).

    PubMed  Article  CAS  Google Scholar 

  118. 118

    Bernasconi, N.L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We dedicate this review to to the memory of Charles A. Janeway, Jr. Supported by Howard Hughes Medical Institute (R.M.) and National Institutes of Health (AI46688 and AI05502 to R.M. and AI054359 to A.I.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Akiko Iwasaki or Ruslan Medzhitov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwasaki, A., Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987–995 (2004). https://doi.org/10.1038/ni1112

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing