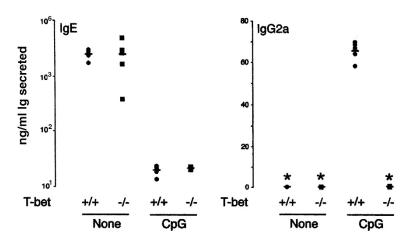
CORRESPONDENCE

The role of T-bet in B cells

To the editor:


We read with interest the recent paper by Liu *et al.* describing the observation that immunostimulatory CpG oligonucleotides induce the transcription factor T-bet in B cells, apparently leading to the suppression of immunoglobulin G1 (IgG1) and IgE isotype switching¹. We were particularly interested in the potential implications of this observation to the pathogenesis of humoral autoimmunity, which seems to involve critical interactions between CpG sequences, Tolllike receptor 9 (TLR9) and T-bet^{2–4}.

The authors and commentators conclude that CpG oligonucleotides suppress IgE and IgG1 through T-bet⁴. T-bet, however, is entirely dispensable for the ability of CpG oligonucleotides to suppress IgE and IgG1 *in vitro*, although it is essential for the production of IgG2a (Fig. 1 and data not shown). Indeed, the strongest evidence for T-bet seems to be in the promotion IgG2a class switching³. As such, the data of Liu *et al.* raise even more intriguing issues, as it would seem that T-bet mediates only one of the class-switching effects induced by TLR9 activation, and its expression, at least in the present context, reflects simply a marker of redirection to the IgG2a isotype. We propose that another transcriptional repressor, perhaps Bcl-6 (ref. 5) or Id2 (ref. 6), independently of T-bet, mediates the suppression of IL-4-related isotypes by CpG.

Stanford L Peng, Jun Li, Ling Lin & Andrea Gerth

Washington University School of Medicine, Campus Box 8045, CSRB 6617, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA. e-mail: speng@im.wustl.edu

- Liu, N., Ohnishi, N., Ni, L., Akira, S. & Bacon, K.B. Nat. Immunol. 4, 687–693 (2003).
- Leadbetter, E.A. *et al. Nature* **416**, 603–607 (2002).
 Peng, S.L., Szabo, S.J. & Glimcher, L.H. *Proc. Natl. Acad. Sci. USA* **99**, 5545–5550 (2002).
- Rifkin, I.R. & Marshak-Rothstein, A. Nat. Immunol. 4,
- 650–652 (2003).
 5. Harris, M.B. *et al. Mol. Cell. Biol.* 19, 7264–7275 (1999).
- 6. Sugai, M. et al. Nat. Immunol. 4, 25-30 (2003).

Figure 1 Immunoglobulin response to CpG oligonucleotides. B cells from T-bet-deficient (squares) or T-bet-sufficient (circles) C57BL/6 mice were incubated in culture for 10 d in the presence of antibody to CD40 and recombinant murine IL-4, in the presence (CpG) or absence (None) of stimulatory CpG oligonucleotides. Secreted IgE or IgG2a titers were determined by enzyme-linked immunosorbent assay. Results for IgG1 (data not shown) were analogous to those of IgE, presented here. *, titers below the limit of the assay (2.5 ng/ml). Each data point represents B cells isolated from one individual mouse; data are representative of three experiments, reflecting five to seven mice per genotype.

Liu replies:

We appreciate seeing the data promptly generated by Peng *et al.* As we were unable to obtain T-bet-deficient mice, we concluded¹ that the CpG-induced up-regulation of T-bet correlated with the induction of IgG2a and the inhibition of IgE and IgG1. The data of Peng *et al.* confirmed our results and further clarified the T-bet-dependent IgG2a induction and T-bet-independent inhibition of IgE, directing the course of CpG-regulated humoral immunity to two scenarios.

The issue raised, then, is how CpG inhibits IL-4-induced IgE switching. It is not likely to be due to interference with tyrosine phosphorylation of STAT6 by Janus kinases¹. Many possibilities still need to be tested, however. For example, serine phosphorylation of STAT6 prevents its binding to DNA, and the transcription factors NF-KB, AP-1, E2A, C/EBP, Bcl6 and Id2 also regulate IL-4induced IgE switching². Indeed, in an attempt to understand TLR9-mediated gene programming in B cells on a genomic scale, we found that CpG-TLR9 regulated a distinct set of transcription factors (data not shown). Notably, in many cases it results in transcriptional suppression through either down-regulation of transactivators or induction of transcriptional repressors. Identification of the molecules responsible for the CpGmediated inhibition of IgE switching must await the results of biochemical and functional analyses.

Ningshu Liu

Research Center Kyoto, Bayer Yakuhin, 6-5-1-3 Kunimidai, Kizu-cho, Soraku-gun, Kyoto 619-0216, Japan. e-mail: ningshu.liu.nl@bayer.co.jp

NATURE IMMUNOLOGY VOLUME 4 NUMBER 11 NOVEMBER 2003

Liu, N., Ohnishi, N., Ni, L., Akira, S. & Bacon, K.B. Nat. Immunol. 4, 687–693 (2003).

Shen, C.H. & Stavnezer, J. J. Immunol. 166, 411–423 (2001).