Review Article | Published:

Natural selection of tumor variants in the generation of “tumor escape” phenotypes

Nature Immunologyvolume 3pages9991005 (2002) | Download Citation



The idea that tumors must “escape” from immune recognition contains the implicit assumption that tumors can be destroyed by immune responses either spontaneously or as the result of immunotherapeutic intervention. Simply put, there is no need for tumor escape without immunological pressure. Here, we review evidence supporting the immune escape hypothesis and critically explore the mechanisms that may allow such escape to occur. We discuss the idea that the central engine for generating immunoresistant tumor cell variants is the genomic instability and dysregulation that is characteristic of the transformed genome. “Natural selection” of heterogeneous tumor cells results in the survival and proliferation of variants that happen to possess genetic and epigenetic traits that facilitate their growth and immune evasion. Tumor escape variants are likely to emerge after treatment with increasingly effective immunotherapies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95, 7556–7561 (1998).

  2. 2

    Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

  3. 3

    Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

  4. 4

    Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med. 196, 129–134 (2002).

  5. 5

    Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

  6. 6

    Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

  7. 7

    Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

  8. 8

    Restifo, N.P. et al. Assumptions of the tumor 'escape' hypothesis. Semin. Cancer Biol. 12, 81–86 (2002).

  9. 9

    Stoler, D.L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. USA 96, 15121–15126 (1999).

  10. 10

    Johnsen, A.K. et al. Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int. J. Cancer 91, 366–372 (2001).

  11. 11

    Zheng, P., Sarma, S., Guo, Y. & Liu, Y. Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res. 59, 3461–3467 (1999).

  12. 12

    Restifo, N.P. et al. Loss of functional β2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88, 100–108 (1996).

  13. 13

    Garrido, F. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today 18, 89–95 (1997).

  14. 14

    Algarra, I., Collado, A. & Garrido, F. Altered MHC class I antigens in tumors. Int. J. Clin. Lab. Res. 27, 95–102 (1997).

  15. 15

    Cabrera, T. et al. High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum. Immunol. 50, 127–134 (1996).

  16. 16

    Hicklin, D.J. et al. β2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J. Clin. Invest. 101, 2720–2729 (1998).

  17. 17

    Restifo, N.P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med. 177, 265–272 (1993).

  18. 18

    Korkolopoulou, P., Kaklamanis, L., Pezzella, F., Harris, A.L. & Gatter, K.C. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br. J. Cancer 73, 148–153 (1996).

  19. 19

    Sanda, M.G. et al. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst. 87, 280–285 (1995).

  20. 20

    Seliger, B. et al. Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Exp. Hematol. 25, 608–614 (1997).

  21. 21

    Ramal, L.M. et al. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum. Immunol. 61, 1001–1012 (2000).

  22. 22

    Versteeg, R. et al. Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J. Exp. Med. 170, 621–635 (1989).

  23. 23

    Soong, T.W. & Hui, K.M. Locus-specific transcriptional control of HLA genes. J. Immunol. 149, 2008–2020 (1992).

  24. 24

    Marincola, F.M. et al. Locus-specific analysis of human leukocyte antigen class I expression in melanoma cell lines. J. Immunother. Emphasis. Tumor Immunol. 16, 13–23 (1994).

  25. 25

    Koopman, L.A., van Der, S., Giphart, M.J. & Fleuren, G.J. Human leukocyte antigen class I gene mutations in cervical cancer. J. Natl. Cancer Inst. 91, 1669–1677 (1999).

  26. 26

    Porgador, A., Mandelboim, O., Restifo, N.P. & Strominger, J.L. Natural killer cell lines kill autologous β2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 94, 13140–13145 (1997).

  27. 27

    Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

  28. 28

    Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96, 6879–6884 (1999).

  29. 29

    Garrido, F. & Algarra, I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 83, 117–158 (2001).

  30. 30

    Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

  31. 31

    Galea-Lauri, J. et al. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol. 163, 62–70 (1999).

  32. 32

    Carbone, E. et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J. Exp. Med. 185, 2053–2060 (1997).

  33. 33

    Takeda, K. et al. CD27-mediated activation of murine NK cells. J. Immunol. 164, 1741–1745 (2000)

  34. 34

    Apte, R.S., Mayhew, E. & Niederkorn, J.Y. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest. Ophthalmol. Vis. Sci. 38, 1277–1282 (1997).

  35. 35

    de Vries, T.J. et al. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res. 57, 3223–3229 (1997).

  36. 36

    Hofbauer, G.F., Kamarashev, J., Geertsen, R., Boni, R. & Dummer, R. Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res. 8, 337–343 (1998).

  37. 37

    Jager, E. et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer 66, 470–476 (1996).

  38. 38

    Lee, K.H. et al. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J. Immunol. 161, 4183–4194 (1998).

  39. 39

    Riker, A. et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126, 112–120 (1999).

  40. 40

    Cormier, J.N. et al. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int. J. Cancer 80, 781–790 (1999).

  41. 41

    Schreiber, H., Wu, T.H., Nachman, J. & Kast, W.M. Immunodominance and tumor escape. Semin. Cancer Biol. 12, 25–31 (2002).

  42. 42

    Straus, S.E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98, 194–200 (2001).

  43. 43

    Davidson, W.F., Giese, T. & Fredrickson, T.N. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med. 187, 1825–1838 (1998).

  44. 44

    Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 7, 94–100 (2001)

  45. 45

    Salvesen, G.S. & Dixit, V.M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967 (1999).

  46. 46

    Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

  47. 47

    Medema, J.P., de Jong, J., van Hall, T., Melief, C.J. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

  48. 48

    Landowski, T.H., Qu, N., Buyuksal, I., Painter, J.S. & Dalton, W.S. Mutations in the Fas antigen in patients with multiple myeloma. Blood 90, 4266–4270 (1997).

  49. 49

    Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024 (1998).

  50. 50

    Shin, M.S. et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am. J. Pathol. 154, 1785–1791 (1999).

  51. 51

    Shin, M.S. et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21, 4129–4136 (2002).

  52. 52

    Shin, M.S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99, 4094–4099 (2002).

  53. 53

    Medema, J.P. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 98, 11515–11520 (2001).

  54. 54

    Hersey, P. & Zhang, X.D. How melanoma cells evade trail-induced apoptosis. Nature Rev. Cancer 1, 142–150 (2001).

  55. 55

    Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).

  56. 56

    Chen, L. et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med. 179, 523–532 (1994).

  57. 57

    Toi, M. et al. Clinical significance of the determination of angiogenic factors. Eur. J. Cancer 32, 2513–2519 (1996).

  58. 58

    Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232 (1998).

  59. 59

    Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M. & Kaibara, N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br. J. Cancer 78, 1573–1577 (1998).

  60. 60

    Almand, B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6, 1755–1766 (2000).

  61. 61

    Girolomoni, G. & Ricciardi-Castagnoli, P. Dendritic cells hold promise for immunotherapy. Immunol. Today 18, 102–104 (1997).

  62. 62

    De Smedt, T. et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27, 1229–1235 (1997).

  63. 63

    Sharma, S. et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J. Immunol. 163, 5020–5028 (1999).

  64. 64

    Ludewig, B. et al. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-α, but strongly enhanced by interleukin-10. Eur. J. Immunol. 25, 1943–1950 (1995).

  65. 65

    Carbone, E. et al. Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol. 29, 4022–4029 (1999).

  66. 66

    Yue, F.Y. et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int. J. Cancer 71, 630–637 (1997).

  67. 67

    Salazar-Onfray, F. et al. Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J. Immunol. 159, 3195–3202 (1997).

  68. 68

    Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 90, 2390–2397 (1997).

  69. 69

    Ristimaki, A., Honkanen, N., Jankala, H., Sipponen, P. & Harkonen, M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 57, 1276–1280 (1997).

  70. 70

    Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 55, 3785–3789 (1995).

  71. 71

    Wolff, H. et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58, 4997–5001 (1998).

  72. 72

    Huang, M. et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58, 1208–1216 (1998).

  73. 73

    Gorsch, S.M., Memoli, V.A., Stukel, T.A., Gold, L.I. & Arrick, B.A. Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res. 52, 6949–6952 (1992).

  74. 74

    Doran, T., Stuhlmiller, H., Kim, J.A., Martin, E.W.J. & Triozzi, P.L. Oncogene and cytokine expression of human colorectal tumors responding to immunotherapy. J. Immunother. 20, 372–376 (1997).

  75. 75

    Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14, 715–725 (2001)

  76. 76

    Fontana, A. et al. Transforming growth factor-β inhibits the generation of cytotoxic T cells in virus-infected mice. J. Immunol. 143, 3230–3234 (1989).

  77. 77

    Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res. 57, 1007–1012 (1997).

  78. 78

    Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366 (1996).

  79. 79

    O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075–1082 (1996).

  80. 80

    Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

  81. 81

    Andreola, G. et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303–1316 (2002).

  82. 82

    Restifo, N.P. Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med. 6, 493–495 (2000).

  83. 83

    Restifo, N.P. Countering the 'counterattack' hypothesis. Nature Med. 7, 259 (2001).

  84. 84

    Chappell, D.B., Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res. 59, 59–62 (1999).

  85. 85

    Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA 94, 13862–13867 (1997).

  86. 86

    Kang, S.M., Lin, Z., Ascher, N.L. & Stock, P.G. Fas ligand expression on islets as well as multiple cell lines results in accelerated neutrophilic rejection. Transplant. Proc. 30, 538 (1998).

  87. 87

    Drozdzik, M., Qian, C., Lasarte, J.J., Bilbao, R. & Prieto, J. Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL). Gene Ther. 5, 1622–1630 (1998).

  88. 88

    Chen, J.J., Sun, Y. & Nabel, G.J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717 (1998).

  89. 89

    Zaks, T.Z., Chappell, D.B., Rosenberg, S.A. & Restifo, N.P. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J. Immunol. 162, 3273–3279 (1999).

  90. 90

    Cappello, P., Novelli, F., Forni, G. & Giovarelli, M. Death receptor ligands in tumors. J. Immunother. 25, 1–15 (2002).

  91. 91

    Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002).

  92. 92

    McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168, 5979–5983 (2002).

  93. 93

    Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

  94. 94

    Sutmuller, R.P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

  95. 95

    Antony, P.A. & Restifo, N.P. Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J. Immunother. 25, 202–206 (2002).

  96. 96

    Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

  97. 97

    McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 16, 311–323 (2002).

  98. 98

    Green, E.A., Choi, Y. & Flavell, R.A. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191 (2002).

  99. 99

    Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

  100. 100

    Moodycliffe, A.M., Nghiem, D., Clydesdale, G. & Ullrich, S.E. Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunol. 1, 521–525 (2000).

Download references

Author information


  1. National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA

    • Hung T. Khong
    •  & Nicholas P. Restifo


  1. Search for Hung T. Khong in:

  2. Search for Nicholas P. Restifo in:

Corresponding authors

Correspondence to Hung T. Khong or Nicholas P. Restifo.

About this article

Publication history

Issue Date


Further reading