Review Article | Published:

Evasion of innate immunity by parasitic protozoa

Nature Immunologyvolume 3pages10411047 (2002) | Download Citation



Parasitic protozoa are a major cause of global infectious disease. These eukaryotic pathogens have evolved with the vertebrate immune system and typically produce long-lasting chronic infections. A critical step in their host interaction is the evasion of innate immune defenses. The ability to avoid attack by humoral effector mechanisms, such as complement lysis, is of particular importance to extracellular parasites, whereas intracellular protozoa must resist killing by lysosomal enzymes and toxic metabolites. They do so by remodeling the phagosomal compartments in which they reside and by interfering with signaling pathways that lead to cellular activation. In addition, there is growing evidence that protozoan pathogens modify the antigen-presenting and immunoregulatory functions of dendritic cells, a process that facilitates their evasion of both innate and adaptive immunity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Pearce, E.J., Scott, P.A. & Sher, A. in Fundamental immunology (ed. Paul, W.) 1271–1294 (Lippincott-Raven, Philadelphia, 1999).

  2. 2

    Borst, P. et al. Antigenic variation in trypanosomes. Arch. Med. Res. 27, 379–388 (1996).

  3. 3

    Nash, T.E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).

  4. 4

    Kyes, S., Horrocks, P. & Newbold, C. Antigenic variation at the infected red cell surface in malaria. Annu. Rev. Microbiol. 55, 673–707 (2001).

  5. 5

    Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–506 (2001).

  6. 6

    Hunter, C. & Sher, A. in Immunology of Infectious Diseases (eds. Kaufman, S., Sher, A. & Ahmed, R.) 111–126 (ASM Press, Washington DC, 2001).

  7. 7

    Joiner, K.A. Complement evasion by bacteria and parasites. Annu. Rev. Microbiol. 42, 201–230 (1988).

  8. 8

    Norris, K.A., Bradt, B., Cooper, N.R. & So, M. Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor. J. Immunol. 147, 2240–2247 (1991).

  9. 9

    Norris, K.A. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun. 66, 2460–2465 (1998).

  10. 10

    Puentes, S.M., Da Silva, R.P., Sacks, D.L., Hammer, C.H. & Joiner, K.A. Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. J. Immunol. 145, 4311–4316 (1990).

  11. 11

    McConville, M.J., Turco, S.J., Ferguson, M.A. & Sacks, D.L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 11, 3593–3600 (1992).

  12. 12

    Brittingham, A. et al. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J. Immunol. 155, 3102–3111 (1995).

  13. 13

    Mosser, D.M. & Edelson, P.J. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol. 135, 2785–2789 (1985).

  14. 14

    Spath, G.F. et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA 97, 9258–9263 (2000).

  15. 15

    Joshi, P.B., Kelly, B.L., Kamhawi, S., Sacks, D.L. & McMaster, W.R. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol. Biochem. Parasitol. 120, 33–40 (2002).

  16. 16

    Raper, J., Portela, M.P., Lugli, E., Frevert, U. & Tomlinson, S. Trypanosome lytic factors: novel mediators of human innate immunity. Curr. Opin. Microbiol. 4, 402–408 (2001).

  17. 17

    Hajduk, S.L. et al. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J. Biol. Chem. 264, 5210–5217 (1989).

  18. 18

    Smith, A.B., Esko, J.D. & Hajduk, S.L. Killing of trypanosomes by the human haptoglobin-related protein. Science 268, 284–286 (1995).

  19. 19

    Raper, J., Fung, R., Ghiso, J., Nussenzweig, V. & Tomlinson, S. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 67, 1910–1916 (1999).

  20. 20

    De Greef, C. & Hamers, R. The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol. 68, 277–284 (1994).

  21. 21

    Xong, H.V. et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839–846 (1998).

  22. 22

    Milner, J.D. & Hajduk, S.L. Expression and localization of serum resistance associated protein in Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol. 104, 271–283 (1999).

  23. 23

    Sibley, L.D. & Andrews, N.W. Cell invasion by un-palatable parasites. Traffic 1, 100–106 (2000).

  24. 24

    Mordue, D.G., Desai, N., Dustin, M. & Sibley, L.D. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J. Exp. Med. 190, 1783–1792 (1999).

  25. 25

    Lingelbach, K. & Joiner, K.A. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J. Cell Sci. 111, 1467–1475 (1998).

  26. 26

    Andrews, N.W., Abrams, C.K., Slatin, S.L. & Griffiths, G.A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore–forming activity at low pH. Cell 61, 1277–1287 (1990).

  27. 27

    Hall, B.F., Webster, P., Ma, A.K., Joiner, K.A. & Andrews, N.W. Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm. J. Exp. Med. 176, 313–325 (1992).

  28. 28

    Ming, M., Ewen, M.E. & Pereira, M.E. Trypanosome invasion of mammalian cells requires activation of the TGF-β signaling pathway. Cell 82, 287–296 (1995).

  29. 29

    Rittig, M.G. & Bogdan, C. Leishmania-host-cell interaction: complexities and alternative views. Parasitol. Today 16, 292–297 (2000).

  30. 30

    Alexander, J. & Russell, D.G. The interaction of Leishmania species with macrophages. Adv. Parasitol. 31, 175–254 (1992).

  31. 31

    Courret, N. et al. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J. Cell Sci. 115, 2303–2316 (2002).

  32. 32

    Desjardins, M. & Descoteaux, A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med. 185, 2061–2068 (1997).

  33. 33

    Dermine, J.F., Scianimanico, S., Prive, C., Descoteaux, A. & Desjardins, M. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol. 2, 115–126 (2000).

  34. 34

    Ilg, T., Demar, M. & Harbecke, D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J. Biol. Chem. 276, 4988–4997 (2001).

  35. 35

    Nathan, C. & Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841–8848 (2000).

  36. 36

    Schwarzer, E. et al. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J. Exp. Med. 176, 1033–1041 (1992).

  37. 37

    Schwarzer, E., Turrini, F., Giribaldi, G., Cappadoro, M. & Arese, P. Phagocytosis of P. falciparum malarial pigment hemozoin by human monocytes inactivates monocyte protein kinase C. Biochim. Biophys. Acta 1181, 51–54 (1993).

  38. 38

    Moore, K.J., Labrecque, S. & Matlashewski, G. Alteration of Leishmania donovani infection levels by selective impairment of macrophage signal transduction. J. Immunol. 150, 4457–4465 (1993).

  39. 39

    Olivier, M., Brownsey, R.W. & Reiner, N.E. Defective stimulus-response coupling in human monocytes infected with Leishmania donovani is associated with altered activation and translocation of protein kinase C. Proc. Natl. Acad. Sci. USA 89, 7481–7485 (1992).

  40. 40

    Descoteaux, A., Matlashewski, G. & Turco, S.J. Inhibition of macrophage protein kinase C-mediated protein phosphorylation by Leishmania donovani lipophosphoglycan. J. Immunol. 149, 3008–3015 (1992).

  41. 41

    McDowell, M.A. & Sacks, D.L. Inhibition of host cell signal transduction by Leishmania: observations relevant to the selective impairment of IL-12 responses. Curr. Opin. Microbiol. 2, 438–443 (1999).

  42. 42

    Piedrafita, D. et al. Regulation of macrophage IL-12 synthesis by Leishmania phosphoglycans. Eur. J. Immunol. 29, 235–244 (1999).

  43. 43

    Nandan, D. & Reiner, N.E. Attenuation of γ interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infect. Immun. 63, 4495–4500 (1995).

  44. 44

    Blanchette, J., Racette, N., Faure, R., Siminovitch, K.A. & Olivier, M. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-γ-triggered Jak2 activation. Eur J. Immunol. 29, 3737–3744 (1999).

  45. 45

    Forget, G. et al. Role of host phosphotyrosine phosphatase SHP-1 in the development of murine Leishmaniasis. Eur. J. Immunol. 31, 3185–3196 (2001).

  46. 46

    Marth, T. & Kelsall, B.L. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987–1995 (1997).

  47. 47

    Giese, N.A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med. 186, 1535–1546 (1997).

  48. 48

    Xu, X. et al. Down-regulation of IL-12 p40 gene in Plasmodium berghei-infected mice. J. Immunol. 167, 235–241 (2001).

  49. 49

    Butcher, B.A., Kim, L., Johnson, P.F. & Denkers, E.Y. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB. J. Immunol. 167, 2193–2201 (2001).

  50. 50

    Shapira, S., Speirs, K., Gerstein, A., Caamano, J. & Hunter, C.A. Suppression of NF-κB activation by infection with Toxoplasma gondii. J. Infect. Dis. 185 (Suppl.) 66–72 (2002).

  51. 51

    Dobbin, A., Smith, N.C. & Jonson, A.M. Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-κB and nitric oxide. J. Immunol. 169, 958–965 (2002).

  52. 52

    Neyer, L.E. et al. Role of interleukin-10 in regulation of T-cell-dependent and T-cell- independent mechanisms of resistance to Toxoplasma gondii. Infect. Immun. 65, 1675–1682 (1997).

  53. 53

    Gazzinelli, R.T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol. 157, 798–805 (1996).

  54. 54

    Omer, F.M., Kurtzhals, J.A. & Riley, E.M. Maintaining the immunological balance in parasitic infections: a role for TGF-β? Parasitol. Today 16, 18–23 (2000).

  55. 55

    Kane, M.M. & Mosser, D.M. The role of IL-10 in promoting disease progression in Leishmaniasis. J. Immunol. 166, 1141–1147 (2001).

  56. 56

    Barral, A. et al. Transforming growth factor β as a virulence mechanism for Leishmania braziliensis. Proc. Natl. Acad. Sci. USA 90, 3442–3446 (1993).

  57. 57

    Luder, C.G., Gross, U. & Lopes, M.F. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol. 17, 480–486 (2001).

  58. 58

    Moore, K.J., Turco, S.J. & Matlashewski, G. Leishmania donovani infection enhances macrophage viability in the absence of exogenous growth factor. J. Leukoc. Biol. 55, 91–98 (1994).

  59. 59

    Nash, P.B. et al. Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. J. Immunol. 160, 1824–1830 (1998).

  60. 60

    Freire-de-Lima, C.G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199–203 (2000).

  61. 61

    von Stebut, E., Belkaid, Y., Jakob, T., Sacks, D.L. & Udey, M.C. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188, 1547–1552 (1998).

  62. 62

    Marovich, M.A., McDowell, M.A., Thomas, E.K. & Nutman, T.B. IL-12p70 production by Leishmania major-harboring human dendritic cells is a CD40/CD40 ligand-dependent process. J. Immunol. 164, 5858–5865 (2000).

  63. 63

    Gorak, P.M., Engwerda, C.R. & Kaye, P.M. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28, 687–695 (1998).

  64. 64

    Subauste, C.S. & Wessendarp, M. Human dendritic cells discriminate between viable and killed Toxoplasma gondii tachyzoites: dendritic cell activation after infection with viable parasites results in CD28 and CD40 ligand signaling that controls IL-12-dependent and -independent T cell production of IFN-γ. J. Immunol. 165, 1498–505 (2000).

  65. 65

    Scanga, C.A. et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J. Immunol. 168, 5997–6001 (2002).

  66. 66

    Urban, B.C. & Roberts, D.J. Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells. Curr. Opin. Immunol. 14, 458–465 (2002).

  67. 67

    Urban, B.C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).

  68. 68

    Urban, B.C., Willcox, N. & Roberts, D.J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl. Acad. Sci. USA 98, 8750–8755 (2001).

  69. 69

    Newbold, C. et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57, 389–398 (1997).

  70. 70

    Rogerson, S.J. et al. Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am. J. Trop. Med. Hyg. 61, 467–472 (1999).

  71. 71

    Van Overtvelt, L. et al. Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules. Infect. Immun. 67, 4033–4040 (1999).

  72. 72

    Brodskyn, C. et al. Glycoinositolphospholipids from Trypanosoma cruzi interfere with macrophages and dendritic cell responses. Infect. Immun. 70, 3736–3743 (2002).

  73. 73

    Jebbari, H., Stagg, A.J., Davidson, R.N. & Knight, S.C. Leishmania major promastigotes inhibit dendritic cell motility in vitro. Infect. Immun. 70, 1023–1026 (2002).

  74. 74

    Ponte-Sucre, A., Heise, D. & Moll, H. Leishmania major lipophosphoglycan modulates the phenotype and inhibits migration of murine Langerhans cells. Immunology 104, 462–467 (2001).

  75. 75

    Konecny, P. et al. Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T cell proliferation in vitro. Eur. J. Immunol. 29, 1803–1811 (1999).

  76. 76

    Qi, H., Popov, V. & Soong, L. Leishmania amazonensis-dendritic cell interactions in vitro and the priming of parasite-specific CD4+ T cells in vivo. J. Immunol. 167, 4534–4542 (2001).

  77. 77

    Bennett, C.L., Misslitz, A., Colledge, L., Aebischer, T. & Blackburn, C.C. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur. J. Immunol. 31, 876–883 (2001).

  78. 78

    McDowell, M.A., Marovich, M., Lira, R., Braun, M. & Sacks, D. Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infect. Immun. 70, 3994–4001 (2002).

  79. 79

    Turco, S.J., Spath, G.F. & Beverley, S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 17, 223–226 (2001).

  80. 80

    Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

  81. 81

    Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C.N. & Sher, A. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunol. 3, 76–82 (2002).

Download references

Author information


  1. Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA

    • David Sacks
    •  & Alan Sher


  1. Search for David Sacks in:

  2. Search for Alan Sher in:

Corresponding author

Correspondence to David Sacks.

About this article

Publication history

Issue Date


Further reading