Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibody regulation of B cell development

Abstract

Antibodies on the surface of B lymphocytes trigger adaptive immune responses and control a series of antigen-independent checkpoints during B cell development. These physiologic processes are regulated by a complex of membrane immunoglobulin and two signal transducing proteins known as Igα and Igβ. Here we focus on the role of antibodies in governing the maturation of B cells from early antigen-independent through the final antigen-dependent stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell–differentiation scheme.

Similar content being viewed by others

References

  1. Landsteiner, K. The Specificity of Serological Reactions (Dover Publications, New York, 1936).

    Google Scholar 

  2. Burnet, F. M. The Clonal Selection Theory of Acquired Immunity (The University Press, Cambridge, 1959).

    Book  Google Scholar 

  3. Talmage, D. W. Clonal selection theory. Science 129, 1643 –1648 (1959).

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 172, 1213–1225 (1991).

    Article  Google Scholar 

  5. Allman, D., Li, J. & Hardy, R. R. Commitment to the B lymphoid lineage occurs before D H-JH recombination. J. Exp. Med. 189 , 735–740 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  7. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. -S., Hayakawa, K. & Hardy, R. R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. O'Riordan, M. & Grosschedl, R. Transcriptional regulation of early B-lymphocyte differentiation. Immunol. Rev. 175 , 94–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 . Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603– 606 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hombach, J., Leclercq, L., Radbruch, A., Rajewsky, K. & Reth, M. A novel 34-kd protein co-isolated with the IgM molecule in surface IgM-expressing cells. EMBO J. 7, 3451–3456 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermanson, G. G., Eisenberg, D., Kincade, P. W. & Wall, R. B29: a member of the immunoglobulin gene superfamily exclusively expressed on B-lineage cells. Proc. Natl. Acad. Sci. USA 85, 6890–6894 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagata, K. et al. The Ig α/Igβ heterodimer on mu-negative proB cells is competent for transducing signals to induce early B cell differentiation . Immunity 7, 559–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Burkhardt, A. L., Brunswick, M., Bolen, J. B. & Mond, J. J. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc. Natl Acad. Sci. USA 88, 7410 –7414 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanchez, M. et al. Signal transduction by immunoglobulin is mediated through IgA and IgB. J. Exp. Med. 178, 1049– 1056 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Kurosaki, T. et al. Syk activation by the Src-family tyrosine kinase in the B cell receptor. J. Exp. Med. 179, 1725– 1729 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Alt, F. W. et al. Ordered rearrangements of immunoglobulin heavy chain variable region segments. EMBO J. 3, 1209– 1219 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  21. ten Boekel, E., Melchers, F. & Rolink, A. The status of Ig loci rearrangements in single cells from different stages of B cell development. Int. Immunol. 7, 1013–1019 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kaartinen, M. & Makela, O. Reading of D genes in variable frames as a source of antibody diversity. Immunol. Today 6 , 324–330 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Meek, K. Analysis of junctional diversity during B lymphocyte development. Science 250, 820–823 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  24. Melchers, F. Fit for life in the immune system? Surrogate L chain tests H chains that test L chains. Proc. Natl Acad. Sci. USA 96, 2571–2573 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reth, M. G. & Alt, F. W. Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells. Nature 312, 418–423 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  26. Horne, M., Roth, P. E. & DeFranco, A. L. Assembly of the truncated immunoglobulin heavy chain dμ into antigen receptor-like complexes in pre-B cells but not in B cells . Immunity 4, 145– 158 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Gu, H., Kitamura, D. & Rajewsky, K. B cell development regulated by gene rearrangement: arrest of maturation by membrane-bound Dμ protein and selection of D H element reading frames. Cell 65, 47–54 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Tornberg, U. C., Bergqvist, I., Haury, M. & Holmberg, D. Regulation of B lymphocyte development by the truncated immunoglobulin heavy chain protein Dμ. J. Exp. Med. 187, 703– 709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reth, M. G., Jackson, S. & Alt, F. W. VHDJH formation and DJH replacement during pre-B differentiation: non-random usage of gene segments . EMBO J. 5, 2131–2138 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong, S., Sanchez, M. & Nussenzweig, M.C. Counterselection against Dμ is mediated through immunoglobulin (Ig)α-Igβ. J. Exp. Med. 184 , 2079–2084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tonegawa, S. Somatic generation of antibody diversity. Nature 302 , 575 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Nutt, S. L., Urbanek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  33. Corcoran, A. E., Riddell, A., Krooshoop, D. & Venkitaraman, A. R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor . Nature 391, 904–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Gong, S. & Nussenzweig, M. C. Regulation of an early developmental checkpoint in the B cell pathway by Igβ. Science 272, 411–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Yancopoulos, G. D. & Alt, F. W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271– 281 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Alt, F. W., Blackwell, T. K. & Yancopoulos, G. D. Development of the primary antibody repertoire. Science 238, 1079–1087 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  37. Jenuwein, T. et al. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269– 272 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Pillai, S. & Baltimore, D. Formation of disulfide-linked m 2w 2 tetramers in pre-B cells by the 18k w-immunoglobulin light chain. Nature 329, 172–174 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  39. Kerr, W. G., Cooper, M. D., Feng, L., Burrows, P. D. & Hendershot, L. M. μ heavy chains can associate with a pseudo-light chain complex (yL) in human pre-B cell lines. Int. Immunol. 1, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Tsubata, T. & Reth, M. The products of pre-B cell-specific genes (λ5 and VpreB) and the immunoglobulin μ chain form a complex that is transported onto the cell surface. J. Exp. Med. 172, 973–976 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Karasuyama, H., Kudo, A. & Melchers, F. The proteins encoded by the VpreB and λ5 pre-B cell-specific genes can associate with each other and with μ heavy chain . J. Exp. Med. 172, 969– 972 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Nossal, G. J. V. & Lederberg, J. Antibody production by single cells. Nature 181, 1419– 1420 (1958).

    Article  CAS  PubMed  Google Scholar 

  43. Pernis, B. G., Chiappino, G., Kelus, A. S. & Gell, P. G. H. Cellular localization of immunoglobulins with different allotypes specificities in rabbit lymphoid tissue. J. Exp. Med. 122, 853–875 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coleclough, C., Perry, R. P., Karjalainen, K. & Weigert, M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290, 372–378 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Weaver, D., Costantini, F., Imanishi, K. T. & Baltimore, D. A transgenic immunoglobulin μ gene prevents rearrangement of endogenous genes. Cell 42, 117–127 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Rusconi, S. & Kohler, G. Transmission and expression of a specific pair of rearranged immunoglobulin μ and κ genes in a transgenic mouse line. Nature 314, 330– 334 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Nussenzweig, M. C. et al. Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin M. Science 236, 816 –819 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Manz, J., Denis, K., Witte, O., Brinster, R. & Storb, U. Feedback inhibition of immunoglobulin gene rearrangement by membrane μ, but not by secreted μ heavy chains. J. Exp. Med. 168, 1363–1381 ( 1988). [Erratum in J. Exp. Med. 169, 2269 (1989)].

    Article  CAS  PubMed  Google Scholar 

  49. Costa, T. E. F., Suh, H. & Nussenzweig, M. C. Chromosomal position of rearranging gene segments influences allelic exclusion in transgenic mice. Proc. Natl Acad. Sci. USA 89, 2205–2208 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell deficient mouse by targeted disruption of the membrane exons of the immunoglobulin μ chain gene. Nature 350, 423– 426 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Nussenzweig, M. C. et al. A human immunoglobulin gene reduces the incidence of lymphomas in c-Myc-bearing transgenic mice. Nature 336, 446–450 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Yel, L. et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia . N. Engl. J. Med. 335, 1486– 1493 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Schiff, C., Lemmers, B., Deville, A., Fougereau, M. & Meffre, E. Autosomal primary immunodeficiencies affecting human bone marrow B cell differentiation. Immunol. Rev. (in the press, 2000).

  54. Minegishi, Y. et al. Mutations in IgA (CD79a) result in a complete block in B-cell development. J. Clin Invest 104, 1115– 1121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rolink, A., Kudo, A., Karasuyama, H., Kikuchi, Y. & Melchers, F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kitamura, D. et al. A critical role of l5 protein in B cell development. Cell 69, 823–831 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  57. Rolink, A. et al. B cell development in mice with a defective λ5 gene . Eur J. Immunol. 23, 1284– 1288 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Löffert, D., Ehlich, A., Muller, W. & Rajewsky, K. Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144 (1996).

    Article  PubMed  Google Scholar 

  59. ten Boekel, E., Melchers, F. & Rolink, A.G. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression . Immunity 8, 199–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Ehlich, A. et al. Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 72, 695–704 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  62. Ghia, P. et al. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain loci. J. Exp. Med. 184, 2217 –2229 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Novobrantseva, T. I. et al. Rearrangement and expression of immunoglobulin light chain genes can precede heavy chain expression during normal B cell development in mice. J. Exp. Med. 189, 75– 88 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Papavasiliou, F., Jankovic, M. & Nussenzweig, M. C. Surrogate or conventional light chains are required for membrane immunoglobulin μ to activate the precursor B cell transition . J. Exp. Med. 184, 2025– 2029 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Pelanda, R., Schaal, S., Torres, R. M. & Rajewsky, K. A prematurely expressed Ig(κ) transgene, but not V(κ)J(κ) gene segment targeted into the Ig(κ) locus, can rescue B cell development in λ5-deficient mice. Immunity 5, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Corcos, D. et al. Pre-B-cell development in the absence of lambda 5 in transgenic mice expressing a heavy-chain disease protein. Curr. Biol. 5, 1140–1148 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Shaffer, A. L. & Schlissel, M. S. A truncated heavy chain protein relieves the requirement for surrogate light chains in early B cell development. J. Immunol. 159, 1265–1275 (1997).

    CAS  PubMed  Google Scholar 

  68. Papavasiliou, F., Misulovin, Z., Suh, H. & Nussenzweig, M. C. The role of Igb in precursor B cell transition and allelic exclusion. Science 268, 408–411 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  69. Hibbs, M. L. et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Nishizumi, H. et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 3, 549–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Appleby, M. W. et al. Involvement of p59fynT in interleukin-5 receptor signaling . J. Exp. Med. 182, 811– 820 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Texido, G. et al. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol. Cell. Biol. 20, 1227–1233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Cheng, A. M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303– 306 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development . Science 286, 1949–1954 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–197 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  77. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  80. Stanhope-Baker, P., Hudson, K. M., Shaffer, A. L., Constantinescu, A. & Schissel, M. S. Cell type-specific chromatin structure determines to targeting of V(D)J recombinase activity in vitro. Cell 85, 1– 20 (1996).

    Article  Google Scholar 

  81. Constantinescu, A. & Schlissel, M. S. Changes in locus-specific V(D)J recombinase activity induced by immunoglobulin gene products during B cell development. J. Exp. Med. 185, 609–620 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perlmutter, R. M., Kearney, J. F., Chang, S. P. & Hood, L. E. Developmentally controlled expression of immunoglobulin VH genes . Science 227, 1597–1601 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Marshall, A. J., Wu, G. E. & Paige, G. J. Frequency of VH81x usage during B cell development: initial decline in usage is independent of Ig heavy chain cell surface expression . J. Immunol. 156, 2077– 2084 (1996).

    CAS  PubMed  Google Scholar 

  84. Yancopoulos, G. D. et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 311, 727–733 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, G. E. & Paige, C. J. VH gene family utilization in colonies derived from B and pre-B cells detected by the RNA colony blot assay. EMBO J. 5, 3475– 3481 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jenuwein, T., Forrester, W. C., Qiu, R. G. & Grosschedl, R. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7, 2016–2032 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  87. Keyna, U., Beck-Engeser, G. B., Jongstra, J., Applequist, S. E. & Jack, H. M. Surrogate light chain-dependent selection of Ig heavy chain V regions. J. Immunol. 155, 5536–5542 (1995).

    CAS  PubMed  Google Scholar 

  88. ten Boekel, E., Melchers, F. & Rolink, A. G. Changes in the V(H) gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor . Immunity 7, 357–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Shiokawa, S. et al. IgM heavy chain complementarity-determining region 3 diversity is constrained by genetic and somatic mechanisms until two months after birth . J. Immunol. 162, 6060– 6070 (1999).

    CAS  PubMed  Google Scholar 

  90. Wasserman, R. et al. A novel mechanism for B cell repertoire maturation based on response by B cell precursors to pre-B receptor assembly. J. Exp. Med. 187, 259–264 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reth, M., Petrac, E., Wiese, P., Lobel, L. & Alt, F. W. Activation of Vκ gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO J. 6, 3299–3305 ( 1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schlissel, M. S. & Baltimore, D. Activation of immunoglobulin κ gene rearrangement correlates with induction of germline κ gene transcription. Cell 58, 1001– 1007 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Maki, K., Nagata, K., Kitamura, F., Takemori, T. & Karasuyama, H. Immunoglobulin β signaling regulates locus accessibility for ordered immunoglobulin gene rearrangements. J. Exp. Med. 191, 1333–1340 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsukamoto, A., Weissman, I. L. & Hunt, S. V. Allelic exclusion in rat κ immunoglobulin chains: extent of Jk rearrangement in normal B lymphocytes. EMBO J. 3, 975–981 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ritchie, K. A., Brinster, R. L. & Storb, U. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in κ transgenic mice. Nature 312, 517–520 (1984).

    Article  CAS  PubMed  Google Scholar 

  96. Rusconi, S. & Kohler, G. Transmission and expression of a specific pair of rearranged immunoglobulin μ and κ genes in a transgenic mouse line. Nature 314, 330– 334 (1985).

    Article  CAS  PubMed  Google Scholar 

  97. Giachino, C., Padovan, E. & Lanzavecchia, A. κ+λ+ dual receptor B cells are present in the human peripheral repertoire. J. Exp. Med. 181, 1245–1250 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Bernard, O., Gough, N. M. & Adams, J. M. Plasmacytomas with more than one immunoglobulin κ mRNA: implications for allelic exclusion. Proc. Natl Acad. Sci. USA 78, 5812–5816 ( 1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kwan, S. P., Max, E. E., Seidman, J. G., Leder, P. & Scharff, M. D. Two κ immunoglobulin genes are expressed in the myeloma S107. Cell 26, 57–66 (1981).

    Article  CAS  PubMed  Google Scholar 

  100. Yamagami, T., Boekel, E., Andersson, J., Rolink, A. & Melchers, F. Frequencies of multiple Ig L chain gene rearrangements in single normal or κ L chain-deficient B lineage cells. Immunity 11, 317– 327 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Berinstein, N., Levy, S. & Levy, R. Activation of an excluded immunoglobulin allele in a human B lymphoma cell line. Science 244, 337– 339 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Rassenti, L. Z., Pratt, L. F., Chen, P. P., Carson, D. A. & Kipps, T. J. Autoantibody-encoding κ L chain genes frequently rearranged in λ L chain-expressing chronic lymphocytic leukemia. J. Immunol. 147, 1060– 1066 (1991).

    CAS  PubMed  Google Scholar 

  103. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801 –1811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hsieh, C. L. & Lieber, M. R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 315–325 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cherry, S. R. & Baltimore, D. Chromatin remodeling directly activates V(D)J recombination. Proc. Natl Acad. Sci. USA 96, 10788–10793 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu, W. et al. Continued RAG expression in late stages of B cell development and no apparent reinduction after immunization. Nature 400, 682–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Monroe, R. et al. RAG2: GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11, 201–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells . J. Exp. Med. 177, 1009– 1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Yamagami, T. et al. Four of five RAG-expressing JCκ−/− small pre-BII cells have no L chain gene rearrangements: detection by high-efficiency single cell PCR. Immunity 11, 309–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B Cell Development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  111. Feddersen, R. M. & Van Ness, B. G. Double recombination of a single immunoglobulin κ-chain allele: implications for the mechanism of rearrangement. Proc. Natl Acad. Sci. USA 82, 4793–4797 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kleinfield, R. et al. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 322, 843– 846 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Levy, S., Campbell, M. J. & Levy, R. Functional immunoglobulin light chain genes are replaced by ongoing rearrangements of germline Vκ genes to downstream Jκ segment in a murine B cell line. J. Exp. Med. 170, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Feddersen, R. M., Martin, D. J. & Van Ness, B. G. Novel recombinations of the IG κ-locus that result in allelic exclusion. J. Immunol. 145, 745–750 (1990).

    CAS  PubMed  Google Scholar 

  115. Harada, K. & Yamagishi, H. Lack of feedback inhibition of Vκ gene rearrangement by productively rearranged alleles. J. Exp. Med. 173, 409–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Reth, M., Gehrmann, P., Petrac, E. & Wiese, P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 322, 840–842 (1986).

    Article  CAS  PubMed  Google Scholar 

  117. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  118. Radic, M. Z., Erickson, J., Litwin, S. & Weigert, M. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 177, 1165–1173 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  119. Hertz, M. & Nemazee, D. BCR ligation induces receptor editing in IgM+IgD bone marrow B cells in vitro. Immunity 6, 429– 436 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Melamed, D. & Nemazee, D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc. Natl Acad. Sci. USA 94, 9267–72 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Melamed, D., Benschop, R. J., Cambier, J. C. & Nemazee, D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92, 173–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes . Nature 337, 562–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Hartley, S. B. et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 72 , 325–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, C. et al. The site and stage of anti-DNA B-cell deletion. Nature 373, 252–255 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  125. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  126. Retter, M.W. & Nemazee, D. Receptor editing occurs frequently during normal B cell development. J. Exp. Med. 188, 1231–1238 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Osmond, D. G. The turnover of B-cell populations. Immunol. Today 14, 34–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Sandel, P. C. & Monroe, J. G. Negative selection of immature B cells by receptor editing or deletion is determined by site of antigen encounter. Immunity 10, 289– 299 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Lederberg, J. Genes and antibodies. Science 129, 1649– 1653 (1959).

    Article  CAS  PubMed  Google Scholar 

  130. Lawton, A. R., Asofsky, R., Hylton, M. B. & Cooper, M. D. Suppression of immunoglobulin class synthesis in mice. I. Effects of treatment with antibody to μ chain. J. Exp. Med. 135, 277–297 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hartley, S. B. et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991).

    Article  CAS  PubMed  Google Scholar 

  132. Okamoto, M. et al. A transgenic model of autoimmune hemolytic anemia. J. Exp. Med. 175, 71–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, C. et al. The site and stage of anti-DNA B-cell deletion. Nature 373, 252–255 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  134. Pike, B. L., Boyd, A.W. & Nossal, G. J. Clonal anergy: the universally anergic B lymphocyte . Proc. Natl Acad. Sci. USA 79, 2013– 2017 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  136. Erikson, J. et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature 349, 331–334 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Tsao, B. P. et al. B cells are anergic in transgenic mice that express IgM anti-DNA antibodies. Eur J. Immunol. 23, 2332– 2339 (1993).

    Article  CAS  PubMed  Google Scholar 

  138. Fulcher, D. A. & Basten, A. Reduced life span of anergic self-reactive B cells in a double- transgenic model. J. Exp. Med. 179, 125–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Bell, S. E. & Goodnow, C. C. A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO J. 13, 816 –826 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Prodeus, A. P. et al. A critical role for complement in maintenance of self-tolerance . Immunity 9, 721–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Rathmell, J. C., Townsend, S. E., Xu, J. C., Flavell, R. A. & Goodnow, C. C. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 87, 319–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Healy, J. I. et al. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 6, 419–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Inaoki, M., Sato, S., Weintraub, B. C., Goodnow, C. C. & Tedder, T. F. CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes . J. Exp. Med. 186, 1923– 1931 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bolland, S. & Ravetch, J. V. Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol. 72, 149–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Hardy, R. R., Hayakawa, K., Parks, D. R. & Herzenberg, L. A. Demonstration of B-cell maturation in X-linked immunodeficient mice by simultaneous three-colour immunofluorescence. Nature 306, 270–272 (1983).

    Article  CAS  PubMed  Google Scholar 

  149. Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  151. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  153. O'Keefe, T. L., Williams, G. T., Davies, S. L. & Neuberger, M. S. Hyperresponsive B cells in CD22-deficient mice. Science 274, 798–801 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  155. Fulop, G., Gordon, J. & Osmond, D. G. Regulation of lymphocyte production in the bone marrow. I. Turnover of small lymphocytes in mice depleted of B lymphocytes by treatment with anti-IgM antibodies. J. Immunol. 130, 644–648 (1983).

    CAS  PubMed  Google Scholar 

  156. Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur J. Immunol. 28, 3738–3748 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  157. Meffre, E. et al. Circulating human B cells that express surrogate light chains and edited receptors. Nature Immunol. 1, 207–213 (2000).

    Article  CAS  Google Scholar 

  158. Osmond, D. G. Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr Opin Immunol. 3, 179 –185 (1991).

    Article  CAS  PubMed  Google Scholar 

  159. Forster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl Acad. Sci. USA 87, 4781– 4784 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Opstelten, D. & Osmond, D. G. Pre-B cells in mouse bone marrow: immunofluorescence stathmokinetic studies of the proliferation of cytoplasmic μ-chain-bearing cells in normal mice. J. Immunol. 131, 2635–2640 ( 1983).

    CAS  PubMed  Google Scholar 

  161. Agenes, F. & Freitas, A. A. Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B cell population. J. Exp. Med. 189, 319 –330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Allman, D. M., Ferguson, S. E. & Cancro, M. P. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J. Immunol. 149, 2533–2540 (1992).

    CAS  PubMed  Google Scholar 

  163. Nagaoka, H., Gonzalez-Aseguinolaza, G., Tsuji, M. & Nussenzweig, M.C. Immunization and infection change the number of recombination activating gene (RAG)-expressing B cells in the periphery by altering immature lymphocyte production. J. Exp. Med. 191, 2113– 2120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357 –1371 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. Levine, M. H. et al. A B-cell receptor-specific selection step governs immature to mature B cell differentiation. Proc. Natl Acad. Sci. USA 97, 2743–2748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  167. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production CD19, and btk. Immunity 12, 39– 49 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Turner, M. et al. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J. Exp. Med. 186, 2013–2021 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, J., Koizumi, T. & Watanabe, T. Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice. J. Exp. Med. 184, 831–838 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Chan, V. W., Meng, F., Soriano, P., DeFranco, A. L. & Lowell, C. A. Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation . Immunity 7, 69–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  174. Hikida, M. et al. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 274, 2092– 2094 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094 –2097 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Hikida, M., Mori, M., Kawabata, T., Takai, T. & Ohmori, H. Characterization of B cells expressing Recombination Activating Genes in germinal centers of immunized mouse lymph nodes. J. Immunol.. 158, 2509–2512 ( 1997).

    CAS  PubMed  Google Scholar 

  177. Han, S. et al. V(D)J recombinase activity in a subset of germinal center B lymphocytes . Science 278, 301–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Papavasiliou, F. et al. V(D)J Recombination in mature B cells a new mechanism for diversification of antibody responses. Science 278, 298–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Hertz, M., Kouskoff, V., Nakamura, T. & Nemazee, D. V(D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling. Nature 394, 292– 295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Meffre, E. et al. Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells. J. Exp. Med. 188 , 765–772 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hayakawa, K., Hardy, R. R., Honda, M., Herzenberg, L. A. & Steinberg, A.D. Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc. Natl Acad. Sci. USA 81, 2494–2498 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hardy, R. R., Hayakawa, K., Shimizu, M., Yamasaki, K. & Kishimoto, T. Rheumatoid factor secretion from human Leu-1+ B cells. Science 236, 81–83 (1987).

    Article  CAS  PubMed  Google Scholar 

  183. Mercolino, T. J., Arnold, L. W., Hawkins, L. A. & Haughton, G. Normal mouse peritoneum contains a large population of Ly-1+ (CD5) B cells that recognize phosphatidyl choline. Relationship to cells that secrete hemolytic antibody specific for autologous erythrocytes. J. Exp. Med. 168, 687–698 (1988).

    Article  CAS  PubMed  Google Scholar 

  184. Pennell, C. A. et al. Biased immunoglobulin variable region gene expression by Ly-1 B cells due to clonal selection. Eur J. Immunol. 19 , 1289–1295 (1989).

    Article  CAS  PubMed  Google Scholar 

  185. Arnold, L. W., Pennell, C. A., McCray, S. K. & Clarke, S. H. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 179, 1585–1595 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Watanabe, N. et al. Expression levels of B cell surface immunoglobulin regulate efficiency of allelic exclusion and size of autoreactive B-1 cell compartment . J. Exp. Med. 190, 461– 469 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  188. Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development . J. Exp. Med. 190, 471– 477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ahearn, J. M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  190. Kerner, J. D. et al. Impaired expansion of mouse B cell progenitors lacking Btk . Immunity 3, 301–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Leitges, M. et al. Immunodeficiency in protein kinase cβ-deficient mice . Science 273, 788–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25 –35 (2000).

    Article  PubMed  Google Scholar 

  193. Sidman, C. L., Shultz, L. D., Hardy, R. R., Hayakawa, K. & Herzenberg, L. A. Production of immunoglobulin isotypes by Ly-1+ B cells in viable motheaten and normal mice . Science 232, 1423–1425 (1986).

    Article  CAS  PubMed  Google Scholar 

  194. Shultz, L. D. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel C. Nussenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meffre, E., Casellas, R. & Nussenzweig, M. Antibody regulation of B cell development. Nat Immunol 1, 379–385 (2000). https://doi.org/10.1038/80816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/80816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing