Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RabGEF1 is a negative regulator of mast cell activation and skin inflammation

Abstract

Mast cell activation induced by aggregation of FcεRI receptors with immunoglobulin E and antigen is mediated through the activation of multiple protein kinase cascades. Here we report that the regulatory protein RabGEF1 bound to Ras and negatively regulated Ras activation and its 'downstream' effector pathways in FcεRI-dependent mast cell activation. RabGEF1-deficient mast cells showed enhanced degranulation and release of lipid mediators and cytokines in response to FcεRI aggregation. RabGEF1-deficient mice developed severe skin inflammation and had increased numbers of mast cells. Thus, RabGEF1 is a negative regulator of FcεRI-dependent mast cell activation, and a lack of RabGEF1 results in the development of skin inflammation in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of RabGEF1 in mouse mast cells activated by FcεRI aggregation in vitro.
Figure 2: Homology of RabGEF1 with members of a Rab5-binding protein family and direct interaction of RabGEF1 with Ras.
Figure 3: Potentiation of Ras-mediated signaling responses in Cl.MC/C57.1 mast cells transfected with the RabGEF1 antisense expression vector in response to FcεRI-dependent cell activation.
Figure 4: Potentiation of IL-6 and PGD2 release in Cl.MC/C57.1 mast cells transfected with the RabGEF1 antisense expression vector in response to FcεRI-dependent cell activation.
Figure 5: Generation and analysis of Rabgef1−/− mice.
Figure 6: Potentiation of Ras-mediated signaling responses in Rabgef1−/− BMCMCs in response to FcεRI-dependent cell activation.
Figure 7: Enhanced release of mediators and cytokines in Rabgef1−/− BMCMCs in response to FcεRI-dependent cell activation.
Figure 8: Phenotypic characteristics of Rabgef1−/− versus wild-type mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Metzger, H. The receptor with high affinity for IgE. Immunol. Rev. 125, 37–48 (1992).

    Article  CAS  Google Scholar 

  2. Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  Google Scholar 

  3. Kinet, J.P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article  CAS  Google Scholar 

  4. Galli, S.J., Maurer, M. & Lantz, C.S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol. 11, 53–59 (1999).

    Article  CAS  Google Scholar 

  5. Galli, S.J. Mast cells and basophils. Curr. Opin. Hematol. 7, 32–39 (2000).

    Article  CAS  Google Scholar 

  6. Mekori, Y.A. & Metcalfe, D.D. Mast cells in innate immunity. Immunol. Rev. 173, 131–140 (2000).

    Article  CAS  Google Scholar 

  7. Rivera, J. Molecular adapters in FcεRI signaling and the allergic response. Curr. Opin. Immunol. 14, 688–693 (2002).

    Article  CAS  Google Scholar 

  8. Kawakami, T. & Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773–786 (2002).

    Article  CAS  Google Scholar 

  9. Hirasawa, N., Scharenberg, A., Yamamura, H., Beaven, M.A. & Kinet, J.P. A requirement for Syk in the activation of the microtubule-associated protein kinase/phospholipase A2 pathway by FcεR1 is not shared by a G protein-coupled receptor. J. Biol. Chem. 270, 10960–10967 (1995).

    Article  CAS  Google Scholar 

  10. Hirasawa, N., Santini, F. & Beaven, M.A. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J. Immunol. 154, 5391–5402 (1995).

    CAS  PubMed  Google Scholar 

  11. Jabril-Cuenod, B. et al. Syk-dependent phosphorylation of Shc. A potential link between FcεRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J. Biol. Chem. 271, 16268–16272 (1996).

    Article  CAS  Google Scholar 

  12. Beaven, M.A. & Baumgartner, R.A. Downstream signals initiated in mast cells by FcεRI and other receptors. Curr. Opin. Immunol. 8, 766–772 (1996).

    Article  CAS  Google Scholar 

  13. Siraganian, R.P. Mast cell signal transduction from the high-affinity IgE receptor. Curr. Opin. Immunol. 15, 639–646 (2003).

    Article  CAS  Google Scholar 

  14. Kawakami, Y. et al. A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proc. Natl. Acad. Sci. USA 100, 9470–9475 (2003).

    Article  CAS  Google Scholar 

  15. Katz, M.E. & McCormick, F. Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 7, 75–79 (1997).

    Article  CAS  Google Scholar 

  16. Shields, J.M., Pruitt, K., McFall, A., Shaub, A. & Der, C.J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

    Article  CAS  Google Scholar 

  17. Eiseman, E. & Bolen, J.B. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355, 78–80 (1992).

    Article  CAS  Google Scholar 

  18. Pribluda, V.S., Pribluda, C. & Metzger, H. Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc. Natl. Acad. Sci. USA 91, 11246–11250 (1994).

    Article  CAS  Google Scholar 

  19. Minoguchi, K. et al. Activation of protein tyrosine kinase p72syk by FcεRI aggregation in rat basophilic leukemia cells. p72syk is a minor component but the major protein tyrosine kinase of pp72. J. Biol. Chem. 269, 16902–16908 (1994).

    CAS  PubMed  Google Scholar 

  20. El-Hillal, O., Kurosaki, T., Yamamura, H., Kinet, J.P. & Scharenberg, A.M. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction. Proc. Natl. Acad. Sci. USA 94, 1919–1924 (1997).

    Article  CAS  Google Scholar 

  21. Saitoh, S. et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity 12, 525–535 (2000).

    Article  CAS  Google Scholar 

  22. Parravicini, V. et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3, 741–748 (2002).

    Article  CAS  Google Scholar 

  23. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  24. Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell 12, 2219–2228 (2001).

    Article  CAS  Google Scholar 

  25. Colicelli, J. et al. Expression of three mammalian cDNAs that interfere with Ras function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 2913–2917 (1991).

    Article  CAS  Google Scholar 

  26. Burd, C.G., Mustol, P.A., Schu, P.V. & Emr, S.D. A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol. Cell. Biol. 16, 2369–2377 (1996).

    Article  CAS  Google Scholar 

  27. Hama, H., Tall, G.G. & Horazdovsky, B.F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J. Biol. Chem. 274, 15284–15291 (1999).

    Article  CAS  Google Scholar 

  28. Tall, G.G., Barbieri, M.A., Stahl, P.D. & Horazdovsky, B.F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    Article  CAS  Google Scholar 

  29. Saito, K. et al. A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5. J. Biol. Chem. 277, 3412–3418 (2002).

    Article  CAS  Google Scholar 

  30. Han, L. & Colicelli, J. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol. Cell. Biol. 15, 1318–1323 (1995).

    Article  CAS  Google Scholar 

  31. Han, L. et al. Protein binding and signaling properties of RIN1 suggest a unique effector function. Proc. Natl. Acad. Sci. USA 94, 4954–4959 (1997).

    Article  CAS  Google Scholar 

  32. Wang, Y. et al. The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol. Cell. Biol. 22, 916–926 (2002).

    Article  CAS  Google Scholar 

  33. Frost, J.A. et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. Embo J. 16, 6426–6438 (1997).

    Article  CAS  Google Scholar 

  34. King, A.J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183 (1998).

    Article  CAS  Google Scholar 

  35. Eblen, S.T., Slack, J.K., Weber, M.J. & Catling, A.D. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell. Biol. 22, 6023–6033 (2002).

    Article  CAS  Google Scholar 

  36. Ingram, D.A. et al. Hyperactivation of p21ras and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J. Exp. Med. 194, 57–69 (2001).

    Article  CAS  Google Scholar 

  37. Barbieri, M.A., Kong, C., Chen, P.I., Horazdovsky, B.F. & Stahl, P.D. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis. J. Biol. Chem. 278, 32027–32036 (2003).

    Article  CAS  Google Scholar 

  38. Di Fiore, P.P. & De Camilli, P. Endocytosis and signaling. an inseparable partnership. Cell 106, 1–4 (2001).

    Article  CAS  Google Scholar 

  39. Barbieri, M.A., Kohn, A.D., Roth, R.A. & Stahl, P.D. Protein kinase B/akt and rab5 mediate Ras activation of endocytosis. J. Biol. Chem. 273, 19367–19370 (1998).

    Article  CAS  Google Scholar 

  40. Liu, K. & Li, G. Catalytic domain of the p120 Ras GAP binds to Rab5 and stimulates its GTPase activity. J. Biol. Chem. 273, 10087–10090 (1998).

    Article  CAS  Google Scholar 

  41. Afar, D.E. et al. Regulation of the oncogenic activity of BCR-ABL by a tightly bound substrate protein RIN1. Immunity 6, 773–782 (1997).

    Article  CAS  Google Scholar 

  42. Dhaka, A. et al. The RAS effector RIN1 modulates the formation of aversive memories. J. Neurosci. 23, 748–757 (2003).

    Article  CAS  Google Scholar 

  43. Xu, R., Seger, R. & Pecht, I. Cutting edge: extracellular signal-regulated kinase activates syk: a new potential feedback regulation of Fcε receptor signaling. J. Immunol. 163, 1110–1114 (1999).

    CAS  PubMed  Google Scholar 

  44. Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811 (2001).

    Article  CAS  Google Scholar 

  45. Asai, K. et al. Regulation of mast cell survival by IgE. Immunity 14, 791–800 (2001).

    Article  CAS  Google Scholar 

  46. Kitaura, J. et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proc. Natl. Acad. Sci. USA 100, 12911–12916 (2003).

    Article  CAS  Google Scholar 

  47. Gagari, E., Tsai, M., Lantz, C.S., Fox, L.G. & Galli, S.J. Differential release of mast cell interleukin-6 via c-kit. Blood 89, 2654–2663 (1997).

    CAS  PubMed  Google Scholar 

  48. Young, J.D., Liu, C.C., Butler, G., Cohn, Z.A. & Galli, S.J. Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc. Natl. Acad. Sci. USA 84, 9175–9179 (1987).

    Article  CAS  Google Scholar 

  49. Tsai, M. et al. The Cl.MC/C57.1(C57) mouse mast cell line is of BALB/c origin and is tumorigenic in BALB/c mice. FASEB J. 10, A1268 (1996).

    Google Scholar 

  50. Ortega, E., Hazan, B., Zor, U. & Pecht, I. Mast cell stimulation by monoclonal antibodies specific for the Fcε receptor yields distinct responses of arachidonic acid and leukotriene C4 secretion. Eur. J. Immunol. 19, 2251–2256 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.H. Koller for support; M. Miyamoto, A. Xu, M. Liebersbach and Z.-S. Wang for technical assistance; O. Kocher, C.J. Der, A. Sidow and J. Binkley for advice; and S. Kohler for review of the skin histology. Supported by Fondation pour la Recherche Medicale (D.S.) and United States Public Health Service (AI-23990, CA-72074 and HL-67674 to S.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to See-Ying Tam or Stephen J Galli.

Ethics declarations

Competing interests

Authors of this manuscript (S.-Y.T., M.T. and S.J.G.) have filed the following patents regarding this research: US Patents 5,965,707 and 6,500,942 (RIN2, a novel inhibitor of Ras-mediated signaling) and US Patent Provisional Application (in vivo models for RabGEF1-dependent signaling and functions).

Supplementary information

Supplementary Fig. 1

Generation and characterization of anti-RabGEF1 antibody (Ac-KSER) (PDF 403 kb)

Supplementary Fig. 2

Generation of Rabgef1−/− mice on WB/Re x C57BL/6F2 background (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, SY., Tsai, M., Snouwaert, J. et al. RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nat Immunol 5, 844–852 (2004). https://doi.org/10.1038/ni1093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing