Post-proteasomal antigen processing for major histocompatibility complex class I presentation

Article metrics


Peptides presented by major histocompatibility complex class I molecules are derived mainly from cytosolic oligopeptides generated by proteasomes during the degradation of intracellular proteins. Proteasomal cleavages generate the final C terminus of these epitopes. Although proteasomes may produce mature epitopes that are eight to ten residues in length, they more often generate N-extended precursors that are too long to bind to major histocompatibility complex class I molecules. Such precursors are trimmed in the cytosol or in the endoplasmic reticulum by aminopeptidases that generate the N terminus of the presented epitope. Peptidases can also destroy epitopes by trimming peptides to below the size needed for presentation. In the cytosol, endopeptidases, especially thimet oligopeptidase, and aminopeptidases degrade many proteasomal products, thereby limiting the supply of many antigenic peptides. Thus, the extent of antigen presentation depends on the balance between several proteolytic processes that may generate or destroy epitopes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of the termini of MHC class I–binding peptides.
Figure 2: Proteasomes generate MHC class I–binding peptides inefficiently.
Figure 3: The size preference of ERAP1 leads to different effects on presentation by different MHC class I alleles.
Figure 4: MHC class I antigen presentation reflects a balance between destruction and production of peptides.


  1. 1

    Rock, K.L. & Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).

  2. 2

    York, I.A., Goldberg, A.L., Mo, X.Y. & Rock, K.L. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 49–66 (1999).

  3. 3

    Rock, K.L., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–70 (2002).

  4. 4

    Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

  5. 5

    Rammensee, H.G. Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7, 85–96 (1995).

  6. 6

    Princiotta, M.F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–354 (2003).

  7. 7

    Goldberg, A.L., Cascio, P., Saric, T. & Rock, K.L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 1169, 1–17 (2002).

  8. 8

    Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

  9. 9

    Kloetzel, P.-M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5, 661–669 (2004).

  10. 10

    Rock, K.L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

  11. 11

    Craiu, A., Aklopian, T., Goldberg, A.L. & Rock, K.L. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc. Natl. Acad. Sci. USA 94, 10850–10855 (1997).

  12. 12

    Cerundolo, V. et al. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur. J. Immunol. 27, 336–341 (1997).

  13. 13

    Schwarz, K. et al. The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. J. Immunol. 164, 6147–6157 (2000).

  14. 14

    Mo, X.Y., Cascio, P., Lemerise, K., Goldberg, A.L. & Rock, K. Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J. Immunol. 163, 5851–5859 (1999).

  15. 15

    Stoltze, L. et al. Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities. Eur. J. Immunol. 28, 4029–4036 (1998).

  16. 16

    Kisselev, A.F., Akopian, T.N., Woo, K.M. & Goldberg, A.L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

  17. 17

    Toes, R.E. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001).

  18. 18

    Cascio, P., Hilton, C., Kisselev, A.F., Rock, K.L. & Goldberg, A.L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001).

  19. 19

    Kessler, J.H. et al. Efficient identification of novel HLA-A*0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med. 193, 73–88 (2001).

  20. 20

    Morel, S. et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117 (2000).

  21. 21

    Lucchiari-Hartz, M. et al. Cytotoxic T lymphocyte epitopes of HIV-1 Nef: Generation of multiple definitive major histocompatibility complex class I ligands by proteasomes. J. Exp. Med. 17, 239–252 (2000).

  22. 22

    Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18, 97–108 (2003).

  23. 23

    York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

  24. 24

    Reits, E. et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20, 495–506 (2004).

  25. 25

    Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

  26. 26

    Ishii, T. et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol. 162, 1303–1309 (1999).

  27. 27

    Beninga, J., Rock, K.L. & Goldberg, A.L. Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273, 18734–18742 (1998).

  28. 28

    Momburg, F., Roelse, J., Hammerling, G.J. & Neefjes, J.J. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med. 179, 1613–1623 (1994).

  29. 29

    Lauvau, G. et al. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190, 1227–1240 (1999).

  30. 30

    Knuehl, C. et al. The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J. Immunol. 167, 1515–1521 (2001).

  31. 31

    Neisig, A. et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J. Immunol. 154, 1273–1279 (1995).

  32. 32

    Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nat. Immunol. 1, 413–418 (2000).

  33. 33

    Elliott, T., Willis, A., Cerundolo, V. & Townsend, A. Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J. Exp. Med. 181, 1481–1491 (1995).

  34. 34

    Lobigs, M., Chelvanayagam, G. & Mullbacher, A. Proteolytic processing of peptides in the lumen of the endoplasmic reticulum for antigen presentation by major histocompatibility class I. Eur. J. Immunol. 30, 1496–1506 (2000).

  35. 35

    Snyder, H.L., Yewdell, J.W. & Bennink, J.R. Trimming of antigenic peptides in an early secretory compartment. J. Exp. Med. 180, 2389–2394 (1994).

  36. 36

    Roelse, J., Gromme, M., Momburg, F., Hammerling, G. & Neefjes, J. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J. Exp. Med. 180, 1591–1597 (1994).

  37. 37

    Paz, P., Brouwenstijn, N., Perry, R. & Shastri, N. Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11, 241–251 (1999).

  38. 38

    Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

  39. 39

    Anderson, K. et al. Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J. Exp. Med. 174, 489–492 (1991).

  40. 40

    Wang, Y., Guttoh, D.S. & Androlewicz, M.J. TAP prefers to transport melanoma antigenic peptides which are longer than the optimal T-cell epitope: evidence for further processing in the endoplasmic reticulum. Melanoma Res. 8, 345–353 (1998).

  41. 41

    Wei, M.L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446 (1992).

  42. 42

    Henderson, R.A. et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266 (1992).

  43. 43

    Komlosh, A. et al. A role for a novel luminal endoplasmic reticulum aminopeptidase in final trimming of 26 S proteasome-generated major histocompatability complex class I antigenic peptides. J. Biol. Chem. 276, 30050–30056 (2001).

  44. 44

    Brouwenstijn, N., Serwold, T. & Shastri, N. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. Immunity 15, 95–104 (2001).

  45. 45

    Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat. Immunol. 2, 644–651 (2001).

  46. 46

    Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

  47. 47

    Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem. (Tokyo) 125, 931–938 (1999).

  48. 48

    Cui, X. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

  49. 49

    Schomburg, L., Kollmus, H., Friedrichsen, S. & Bauer, K. Molecular characterization of a puromycin-insensitive leucyl-specific aminopeptidase, PILS-AP. Eur. J. Biochem. 267, 3198–3207 (2000).

  50. 50

    Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I–presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

  51. 51

    Koopmann, J.O., Post, M., Neffjes, J.J., Hammerling, G.J. & Momburg, F. Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26, 1720–1728 (1996).

  52. 52

    Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

  53. 53

    Ojcius, D.M., Gapin, L., Kanellopoulos, J.M. & Kourilsky, P. Is antigen processing guided by major histocompatibility complex molecules? FASEB J. 8, 974–978 (1994).

  54. 54

    Falk, K., Rotzschke, O. & Rammensee, H.G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251 (1990).

  55. 55

    Collins, E.J., Garboczi, D.N. & Wiley, D.C. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371, 626–629 (1994).

  56. 56

    Ojcius, D.M., Langlade-Demoyen, P., Gachelin, G. & Kourilsky, P. Role for MHC class I molecules in selecting and protecting high affinity peptides in the presence of proteases. J. Immunol. 152, 2798–2810 (1994).

  57. 57

    Gil-Torregrosa, B.C., Raul Castano, A. & Del Val, M. Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. J. Exp. Med. 188, 1105–1116 (1998).

  58. 58

    Gil-Torregrosa, B.C., Castano, A.R., Lopez, D. & Del Val, M. Generation of MHC class I peptide antigens by protein processing in the secretory route by furin. Traffic 1, 641–651 (2000).

  59. 59

    Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

  60. 60

    Momburg, F., Neefjes, J.J. & Hammerling, G.J. Peptide selection by MHC-encoded TAP transporters. Curr. Opin. Immunol. 6, 32–37 (1994).

  61. 61

    Lopez, D. & Del Val, M. Selective involvement of proteasomes and cysteine proteases in MHC class I antigen presentation. J. Immunol. 159, 5769–5772 (1997).

  62. 62

    Del-Val, M. & Lopez, D. Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8+ T lymphocytes. Mol. Immunol. 39, 235–247 (2002).

  63. 63

    Lopez, D., Gil-Torregrosa, B.C., Bergmann, C. & Del Val, M. Sequential cleavage by metallopeptidases and proteasomes is involved in processing HIV-1 ENV epitope for endogenous MHC class I antigen presentation. J. Immunol. 164, 5070–5077 (2000).

  64. 64

    Seifert, U. et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat. Immunol. 4, 375–379 (2003).

  65. 65

    Tomkinson, B. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci. 24, 355–359 (1999).

  66. 66

    Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science 283, 978–981 (1999).

  67. 67

    Levy, F. et al. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. J. Immunol. 169, 4161–4171 (2002).

  68. 68

    Bury, M. et al. Effects of an inhibitor of tripeptidyl peptidase II (Ala-Ala-Phe-chloromethylketone) and its combination with an inhibitor of the chymotrypsin-like activity of the proteasome (PSI) on apoptosis, cell cycle and proteasome activity in U937 cells. Folia Histochem. Cytobiol. 39, 131–132 (2001).

  69. 69

    Fruci, D. et al. Quantifying recruitment of cytosolic peptides for HLA class I presentation: impact of TAP transport. J. Immunol. 170, 2977–2984 (2003).

  70. 70

    Kunisawa, J. & Shastri, N. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. Mol. Cell 12, 565–576 (2003).

  71. 71

    Saric, T. et al. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J. Biol. Chem. 276, 36474–36481 (2001).

  72. 72

    York, I.A. et al. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18, 429–440 (2003).

  73. 73

    Kim, S.I., Pabon, A., Swanson, T.A. & Glucksman, M.J. Regulation of cell-surface major histocompatibility complex class I expression by the endopeptidase EC3.4.24.15 (thimet oligopeptidase). Biochem. J. 375, 111–120 (2003).

  74. 74

    Dunn, A.Y., Melville, M.W. & Frydman, J. Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J. Struct. Biol. 135, 176–184 (2001).

  75. 75

    Kandror, O., Sherman, M. & Goldberg, A. Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL. J. Biol. Chem. 274, 37743–37749 (1999).

  76. 76

    Samino, Y., Lopez, D., Guil, S., De Leon, P. & Del Val, M. An endogenous HIV envelope-derived peptide without the terminal NH3+ group anchor is physiologically presented by major histocompatibility complex class I molecules. J. Biol. Chem. 279, 1151–1160 (2004).

  77. 77

    Hudrisier, D., Oldstone, M.B. & Gairin, J.E. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2Db and H-2Kb molecules. Virology 234, 62–73 (1997).

  78. 78

    Barrett, A.J. et al. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol. 248, 529–556 (1995).

Download references


We thank E. Bishop for assistance in preparation of this manuscript. Supported by grants from the National Institute of General Medical Sciences (A.L.G.) and National Institutes of Health (K.L.R.).

Author information

Correspondence to Ian A York.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rock, K., York, I. & Goldberg, A. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5, 670–677 (2004) doi:10.1038/ni1089

Download citation

Further reading