Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice

An Erratum to this article was published on 01 January 2005


T cell–derived cytokines are important in the development of an effective immune response, but when dysregulated they can promote disease. Here we identify a four-helix bundle cytokine we have called interleukin 31 (IL-31), which is preferentially produced by T helper type 2 cells. IL-31 signals through a receptor composed of IL-31 receptor A and oncostatin M receptor. Expression of IL-31 receptor A and oncostatin M receptor mRNA was induced in activated monocytes, whereas epithelial cells expressed both mRNAs constitutively. Transgenic mice overexpressing IL-31 developed severe pruritis, alopecia and skin lesions. Furthermore, IL-31 receptor expression was increased in diseased tissues derived from an animal model of airway hypersensitivity. These data indicate that IL-31 may be involved in promoting the dermatitis and epithelial responses that characterize allergic and non-allergic diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-31 signals through IL-31RA and OSMR.
Figure 2: Expression analysis of IL-31 by real-time PCR.
Figure 3: Expression analysis of IL-31RA and OSMR mRNA in human and mouse samples by real-time PCR.
Figure 4: IL-31-transgenic lesional skin is characterized by many hallmarks of atopic dermatitis.
Figure 5: IL-31-transgenic mice have enlarged peripheral lymph nodes containing an inverted ratio of T lymphocytes to B lymphocytes and an increased number of activated CD4+ and CD8+ T cells.
Figure 6: Intradermal injection of IL-31 causes cell infiltration and acanthosis.
Figure 7: IL-31RA-deficient mice do not develop pruritis or alopecia when given mouse IL-31 by osmotic pump.
Figure 8: IL-31RA mRNA is upregulated in lung and bronchoalveolar lavage cells after allergen sensitization.

Accession codes




  1. Robert, C. & Kupper, T.S. Inflammatory skin diseases, T cells, and immune surveillance. N. Engl. J. Med. 341, 1817–1828 (1999).

    Article  CAS  Google Scholar 

  2. Hwang, S.T. Mechanisms of T-cell homing to skin. Adv. Dermatol. 17, 211–241 (2001).

    CAS  PubMed  Google Scholar 

  3. Akdis, C.A. et al. T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J. Invest. Dermatol. 113, 628–634 (1999).

    Article  CAS  Google Scholar 

  4. Leung, D.Y. & Bieber, T. Atopic dermatitis. Lancet 361, 151–160 (2003).

    Article  Google Scholar 

  5. Boulay, J.L., O'Shea, J.J. & Paul, W.E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 19, 159–163 (2003).

    Article  CAS  Google Scholar 

  6. Ghilardi, N. et al. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J. Biol. Chem. 277, 16831–16836 (2002).

    Article  CAS  Google Scholar 

  7. Diveu, C. et al. GPL, a novel cytokine receptor related to GP130 and leukemia inhibitory factor receptor. J. Biol. Chem. 278, 49850–49859 (2003).

    Article  CAS  Google Scholar 

  8. Lok, S. et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369, 565–568 (1994).

    Article  CAS  Google Scholar 

  9. Palacios, R. & Steinmetz, M. Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41, 727–734 (1985).

    Article  CAS  Google Scholar 

  10. Sprang, S.R. & Bazan, J.F. Cytokine structural taxonomy and mechanisms of receptor engagement. Curr. Opin. Struct. Biol. 3, 815–827 (1993).

    Article  CAS  Google Scholar 

  11. Uzel, G., Frucht, D.M., Fleisher, T.A. & Holland, S.M. Detection of intracellular phosphorylated STAT-4 by flow cytometry. Clin. Immunol. 100, 270–276 (2001).

    Article  CAS  Google Scholar 

  12. Chan, L.S., Robinson, N. & Xu, L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J. Invest. Dermatol. 117, 977–983 (2001).

    Article  CAS  Google Scholar 

  13. Konishi, H. et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc. Natl. Acad. Sci. USA 99, 11340–11345 (2002).

    Article  CAS  Google Scholar 

  14. Vestergaard, C. et al. A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest. Dermatol. 115, 640–646 (2000).

    Article  CAS  Google Scholar 

  15. Tomkinson, A. et al. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol. 166, 5792–5800 (2001).

    Article  CAS  Google Scholar 

  16. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  17. Eisenbarth, S.C. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    Article  CAS  Google Scholar 

  18. Dabbagh, K., Dahl, M.E., Stepick-Biek, P. & Lewis, D.B. Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J. Immunol. 168, 4524–4530 (2002).

    Article  CAS  Google Scholar 

  19. Trautmann, A., Akdis, M., Brocker, E.B., Blaser, K. & Akdis, C.A. New insights into the role of T cells in atopic dermatitis and allergic contact dermatitis. Trends Immunol. 22, 530–532 (2001).

    Article  CAS  Google Scholar 

  20. Woodward, A.L. et al. An obligate role for T-cell receptor αβ+ T cells but not T-cell receptor γδ+ T cells, B cells, or CD40/CD40L interactions in a mouse model of atopic dermatitis. J. Allergy Clin. Immunol. 107, 359–366 (2001).

    Article  CAS  Google Scholar 

  21. Matsuda, H. et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 9, 461–466 (1997).

    Article  CAS  Google Scholar 

  22. Nickoloff, B.J. & Naidu, Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J. Am. Acad. Dermatol. 30, 535–546 (1994).

    Article  CAS  Google Scholar 

  23. Matsushima, H., Hayashi, S. & Shimada, S. Skin scratching switches immune responses from Th2 to Th1 type in epicutaneously immunized mice. J. Dermatol. Sci. 32, 223–230 (2003).

    Article  CAS  Google Scholar 

  24. Williams, I.R. et al. IL-7 overexpression in transgenic mouse keratinocytes causes a lymphoproliferative skin disease dominated by intermediate TCR cells: evidence for a hierarchy in IL-7 responsiveness among cutaneous T cells. J. Immunol. 159, 3044–3056 (1997).

    CAS  Google Scholar 

  25. Stander, S. & Steinhoff, M. Pathophysiology of pruritus in atopic dermatitis: an overview. Exp. Dermatol. 11, 12–24 (2002).

    Article  CAS  Google Scholar 

  26. Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 9, 1805–1813 (1990).

    Article  CAS  Google Scholar 

  27. Wilkinson, J., Thomas, S., Lio, P., Holgate, S.T. & Morton, N.E. Evidence for linkage for atopy and asthma to markers on chromosome 12q. Eur. Respir. J. 9, 435s (1996).

    Google Scholar 

  28. Raby, B.A. et al. Chromosome 12q harbors multiple genetic loci related to asthma and asthma-related phenotypes. Hum. Mol. Genet. 12, 1973–1979 (2003).

    Article  CAS  Google Scholar 

  29. Gubler, U. & Hoffman, B.J. A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  30. Chtanova, T., Kemp, R.A., Sutherland, A.P., Ronchese, F. & Mackay, C.R. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type 1 and type 2 T cells. J. Immunol. 167, 3057–3063 (2001).

    Article  CAS  Google Scholar 

  31. Corti, M., Brody, A.R. & Harrison, J.H. Isolation and primary culture of murine alveolar type II cells. Am. J. Respir. Cell. Mol. Biol. 14, 309–315 (1996).

    Article  CAS  Google Scholar 

  32. Warshamana, G.S., Corti, M. & Brody, A.R. TNF-α, PDGF, and TGF-β1 expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: TNF-α induces TGF-β1 . Exp. Mol. Pathol. 71, 13–33 (2001).

    Article  CAS  Google Scholar 

  33. Taboit-Dameron, F. et al. Association of the 5′HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 8, 223–235 (1999).

    Article  CAS  Google Scholar 

  34. Iritani, B.M., Forbush, K.A., Farrar, M.A. & Perlmutter, R.M. Control of B cell development by Ras-mediated activation of Raf. EMBO J. 16, 7019–7031 (1997).

    Article  CAS  Google Scholar 

  35. Gross, J.A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  Google Scholar 

  36. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  Google Scholar 

  37. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  Google Scholar 

Download references


We thank K. Kim, K. Bontadelli and D. Cutler for help with the generation and analysis of the IL-31-transgenic mice; K. Bannink for the IL-31 in vivo treatment studies; T. Whitmore for insights regarding the gene array analysis and genetic linkage analysis; and M. Bernard for assistance in preparing the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jane A Gross.

Ethics declarations

Competing interests

The authors of this manuscript are employed or previously employed by ZymoGenetics Inc. and may or may not benefit financially from the publication of this paper.

Supplementary information

Supplementary Table 1

STAT activation by IL-31 in human cells (PDF 4 kb)

Supplementary Table 2

Induction of chemokine genes in IL-31-treated keratinocytes (PDF 5 kb)

Supplementary Table 3

Extent and timing of skin phenotype in IL-31 Tg mice (PDF 5 kb)

Supplementary Table 4

Lymphoid and myeloid cell development is normal in IL-31RA-deficient mice (PDF 6 kb)

Supplementary Note (XLS 31 kb)

Supplementary Methods (PDF 5 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dillon, S., Sprecher, C., Hammond, A. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5, 752–760 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing