53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination


The mammalian protein 53BP1 is activated in many cell types in response to genotoxic stress, including DNA double-strand breaks (DSBs). We now examine potential functions for 53BP1 in the specific genomic alterations that occur in B lymphocytes. Although 53BP1 was dispensable for V(D)J recombination and somatic hypermutation (SHM), the processes by which immunoglobulin (Ig) variable region exons are assembled and mutated, it was required for Igh class-switch recombination (CSR), the recombination and deletion process by which Igh constant region genes are exchanged. When stimulated to undergo CSR, 53BP1-deficient cells exhibited no defect in CH germline transcription or AID expression, however these cells had a profound decrease in switch junctions. The current findings, in combination with the known 53BP1 functions and how it is activated, implicate the DNA damage response to DSBs in the joining phase of class-switch recombination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bone marrow and splenic B cell development in Trp53bp1−/− mice.
Figure 2: Serum Igh isotype expression in 53BP1-deficient mice.
Figure 3: Defective Igh class switching in 53BP1-deficient B cells.
Figure 4: Induction of factors associated with CSR initiation.
Figure 5: Normal growth of activated 53BP1-deficient B cells.
Figure 6: Immunoglobulin gene SHM in Trp53bp1−/− mice.

Accession codes




  1. 1

    van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Mills, K.D., Ferguson, D.O. & Alt, F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687–696 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Jung, D. & Alt, F.W. Unraveling V(D)J recombination: Insights into gene regulation. Cell 116, 299–311 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Storb, U. & Stavnezer, J. Immunoglobulin genes: generating diversity with AID and UNG. Curr. Biol. 12, 725–727 (2002).

    Article  Google Scholar 

  8. 8

    Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109, S35–44 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Neuberger, M.S., Harris, R.S., Di Noia, J. & Petersen-Mahrt, S.K. Immunity through DNA deamination. Trends Biochem. Sci. 28, 305–312 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D. & Scharff, M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1–11 (2004).

    Article  Google Scholar 

  17. 17

    Chua, K.F., Alt, F.W. & Manis, J.P. The function of AID in somatic mutation and class switch recombination: upstream or downstream of DNA breaks. J. Exp. Med. 195, F37–41 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat. Immunol. 4, 631–638 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Xia, Z., Morales, J.C., Dunphy, W.G. & Carpenter, P.B. Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J. Biol. Chem. 276, 2708–2718 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell. Biol. 151, 1381–1390 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell. Biol. 21, 1719–1729 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613–620 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Morales, J.C. et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem. 278, 14971–14977 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Ward, I.M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol. 23, 2556–2563 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Chu, C.C., Max, E.E. & Paul, W.E. DNA rearrangement can account for in vitro switching to IgG1. J. Exp. Med. 178, 1381–1390 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Lutzker, S. & Alt, F.W. Structure and expression of germ line immunoglobulin γ2b transcripts. Mol. Cell. Biol. 8, 1849–1852 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Yu, K. & Lieber, M.R. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair (Amst) 2, 1163–1174 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Hodgkin, P.D., Lee, J.H. & Lyons, A.B. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Jolly, C.J., Klix, N. & Neuberger, M.S. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic Acids Res. 25, 1913–1919 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Iwabuchi, K. et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278, 36487–36495 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Manis, J.P., Dudley, D., Kaylor, L. & Alt, F.W. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 16, 607–617 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Bosma, G.C. et al. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J. Exp. Med. 196, 1483–1495 (2002).

    CAS  Article  Google Scholar 

  38. 38

    Cook, A.J. et al. Reduced switching in SCID B cells is associated with altered somatic mutation of recombined S regions. J. Immunol. 171, 6556–6564 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4, 993–997 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Wang, B., Matsuoka, S., Carpenter, P.B. & Elledge, S.J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    CAS  Article  Google Scholar 

  41. 41

    DiTullio, R.A., Jr. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell. Biol. 4, 998–1002 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Bassing, C.H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. USA 99, 8173–8178 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Bassing, C.H. & Alt, F.W. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 3, e119–e123 (2004).

    Article  Google Scholar 

  47. 47

    Li, Y.S., Hayakawa, K. & Hardy, R.R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Ehrenstein, M.R. & Neuberger, M.S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Casola, S. et al. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5, 317–327 (2004).

    CAS  Article  Google Scholar 

Download references


We thank C. Bassing for critical reading of the manuscript. The laboratories of P.B.C. and F.W.A. contributed equally to this work. Supported by the National Institutes of Health (AI3154 and CA92625 to F.W.A.), Ellison Medical Foundation (P.B.C. and F.W.A.), Cure for Lymphoma Foundation (J.P.M.) and Howard Hughes Medical Institute (F.W.A.).

Author information



Corresponding author

Correspondence to John P Manis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manis, J., Morales, J., Xia, Z. et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 5, 481–487 (2004). https://doi.org/10.1038/ni1067

Download citation

Further reading