Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single class II myosin modulates T cell motility and stopping, but not synapse formation

Abstract

Upon encountering an antigen, motile T cells stop crawling, change morphology and ultimately form an 'immunological synapse'. Although myosin motors are thought to mediate various aspects of this process, the molecules involved and their exact roles are not defined. Here we show that nonmuscle myosin heavy chain IIA, or MyH9, is the only class II myosin expressed in T cells and is associated with the uropod during crawling. MyH9 function is required for maintenance of the uropod and for T cell motility but is dispensable for synapse formation. Phosphorylation of MyH9 in its multimerization domain by T cell receptor–generated signals indicates that inactivation of this motor may be a key step in the 'stop' response during antigen recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MyH9 is the predominant class II myosin motor expressed in T cells.
Figure 2: MyH9 is enriched and recycled at the uropod of crawling T cells and repolarizes to the T cell–APC interface during synapse formation.
Figure 3: MyH9 motor activity is required for T cell polarity.
Figure 4: MyH9 function is necessary for T cell crawling.
Figure 5: Pharmacological inhibition of MyH9 does not prevent T cell-B cell coupling.
Figure 6: MyH9 inhibition does not prevent relocalization of immunological synapse and cytoskeletal components.
Figure 7: MyH9 is phosphorylated at threonine residues in response to TCR recognition.

Similar content being viewed by others

References

  1. Sanchez-Madrid, F. & del Pozo, M.A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  Google Scholar 

  2. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  Google Scholar 

  3. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  4. McFarland, W. & Heilman, D.H. Lymphocyte foot appendage: its role in lymphocyte function and in immunological reactions. Nature 205, 887–888 (1965).

    Article  CAS  Google Scholar 

  5. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  Google Scholar 

  6. Donnadieu, E., Bismuth, G. & Trautmann, A. Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr. Biol. 4, 584–595 (1994).

    Article  CAS  Google Scholar 

  7. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    Article  CAS  Google Scholar 

  8. Vicente-Manzanares, M., Sancho, D., Yanez-Mo, M. & Sanchez-Madrid, F. The leukocyte cytoskeleton in cell migration and immune interactions. Int. Rev. Cytol. 216, 233–289 (2002).

    Article  CAS  Google Scholar 

  9. Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl Acad. Sci. USA 94, 3909–3913 (1997).

    Article  CAS  Google Scholar 

  10. Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential assembly of CD3z and CD4 during T cell activation. Science 289, 1349–1352 (2000).

    Article  CAS  Google Scholar 

  11. Monks, C.R.F., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  12. Grakoui, A. et al. The immunological synapse: A molecular machine that controls T cell activation. Science 285, 221–226 (1999).

    Article  CAS  Google Scholar 

  13. Kupfer, A. & Singer, S.J. The specific interaction of helper T cells and antigen-presenting B cells: IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J. Exp. Med. 170, 1697–1713 (1989).

    Article  CAS  Google Scholar 

  14. Wülfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  Google Scholar 

  15. Wulfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA 95, 6302–6307 (1998).

    Article  CAS  Google Scholar 

  16. Villalba, M. et al. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J. Cell Biol. 155, 331–338 (2001).

    Article  CAS  Google Scholar 

  17. Moss, W.C., Irvine, D.J., Davis, M.M. & Krummel, M.F. Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation. Proc. Natl. Acad. Sci. USA 99, 15024–15029 (2002).

    Article  CAS  Google Scholar 

  18. Mermall, V., Post, P.L. & Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533 (1998).

    Article  CAS  Google Scholar 

  19. Sellers, J.R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496, 3–22 (2000).

    Article  CAS  Google Scholar 

  20. Berg, J.S., Powell, B.C. & Cheney, R.E. A millennial myosin census. Mol. Biol. Cell 12, 780–794 (2001).

    Article  CAS  Google Scholar 

  21. Leal, A. et al. A novel myosin heavy chain gene in human chromosome 19q13.3. Gene 312, 165–171 (2003).

    Article  CAS  Google Scholar 

  22. Bresnick, A.R. Molecular mechanisms of nonmuscle myosin-II regulation. Curr. Opin. Cell Biol. 11, 26–33 (1999).

    Article  CAS  Google Scholar 

  23. Straight, A.F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  Google Scholar 

  24. De Lozanne, A. & Spudich, J.A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091 (1987).

    Article  CAS  Google Scholar 

  25. Doolittle, K.W., Reddy, I. & McNally, J.G. 3D analysis of cell movement during normal and myosin-II-null cell morphogenesis in dictyostelium. Dev. Biol. 167, 118–129 (1995).

    Article  CAS  Google Scholar 

  26. Wei, Q. & Adelstein, R.S. Conditional expression of a truncated fragment of nonmuscle myosin II-A alters cell shape but not cytokinesis in HeLa cells. Mol. Biol. Cell 11, 3617–3627 (2000).

    Article  CAS  Google Scholar 

  27. Ludowyke, R.I., Peleg, I., Beaven, M.A. & Adelstein, R.S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J. Biol. Chem. 264, 12492–12501 (1989).

    CAS  PubMed  Google Scholar 

  28. Buxton, D.B. & Adelstein, R.S. Calcium-dependent threonine phosphorylation of nonmuscle myosin in stimulated RBL-2H3 mast cells. J. Biol. Chem. 275, 34772–34779 (2000).

    Article  CAS  Google Scholar 

  29. Lauffenburger, D.A. & Horwitz, A.F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  30. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  Google Scholar 

  31. Heidemann, S.R. & Buxbaum, R.E. Cell crawling: first the motor, now the transmission. J. Cell Biol. 141, 1–4 (1998).

    Article  CAS  Google Scholar 

  32. Liang, W., Licate, L., Warrick, H., Spudich, J. & Egelhoff, T. Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration. BMC Cell Biol. 3, 19 (2002).

    Article  Google Scholar 

  33. Levi, S., Polyakov, M.V. & Egelhoff, T.T. Myosin II dynamics in Dictyostelium: determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. Cell Motil. Cytoskeleton 53, 177–188 (2002).

    Article  CAS  Google Scholar 

  34. Golomb, E. et al. Identification and characterization of nonmuscle myosin II–C, a new member of the myosin II family. J. Biol. Chem. 279, 2800–2808 (2004).

    Article  CAS  Google Scholar 

  35. Rey, M. et al. Cutting edge: association of the motor protein nonmuscle myosin heavy chain-IIA with the C terminus of the chemokine receptor CXCR4 in T lymphocytes. J. Immunol. 169, 5410–5414 (2002).

    Article  CAS  Google Scholar 

  36. Egelhoff, T.T., Lee, R.J. & Spudich, J.A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75, 363–371 (1993).

    Article  CAS  Google Scholar 

  37. Redowicz, M.J. Regulation of nonmuscle myosins by heavy chain phosphorylation. J. Muscle Res. Cell Motil. 22, 163–173 (2001).

    Article  CAS  Google Scholar 

  38. Ebralidze, A. et al. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev. 3, 1086–1093 (1989).

    Article  CAS  Google Scholar 

  39. Ford, H.L., Salim, M.M., Chakravarty, R., Aluiddin, V. & Zain, S.B. Expression of Mts1, a metastasis-associated gene, increases motility but not invasion of a nonmetastatic mouse mammary adenocarcinoma cell line. Oncogene 11, 2067–2075 (1995).

    CAS  PubMed  Google Scholar 

  40. Ford, H.L., Silver, D.L., Kachar, B., Sellers, J.R. & Zain, S.B. Effect of Mts1 on the structure and activity of nonmuscle myosin II. Biochemistry 36, 16321–16327 (1997).

    Article  CAS  Google Scholar 

  41. Kamm, K.E. & Stull, J.T. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276, 4527–4530 (2001).

    Article  CAS  Google Scholar 

  42. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  Google Scholar 

  43. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  Google Scholar 

  44. Kaye, J., Porcelli, S., Tite, J., Jones, B. & Janeway, C.A., Jr. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J. Exp. Med. 158, 836–856 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weiss and S. Reck-Peterson (University of California at San Francisco) for comments on the manuscript, R.S. Adelstein (National Heart, Lung and Blood Institute, National Institutes of Health) for kindly providing us with the human MyH9-GFP fusion construct and for the MyH14 specific antibody, and S. Jiang for expert technical assistance with cell sorting. J.J. was supported in part by a fellowship from the Fondazione Italiana per la Ricerca sul Cancro. This work was supported by a grant from the US National Institutes of Health (RO1-AI52116-01) and from the Howard Hughes Medical Institute Biomedical Research Support Program (#5300246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F Krummel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1 (PDF 61 kb)

Supplementary Fig. 2 (PDF 45 kb)

Supplementary Fig. 3 (PDF 72 kb)

Supplementary Fig. 4 (PDF 44 kb)

Supplementary Video 1

DIC (top) and fluorescence (bottom) images of an MyH9-GFP transfected D10 T cell clone crawling from left to right within the field have been recorded every 5 seconds. (MOV 2992 kb)

Supplementary Video 2

MyH9 polarization to the synapse. Simultaneous DIC (left), Calcium concentrations (as measured by Fura2-AM displayed in pseudo-color scale, middle), and MyH9-GFP fluorescence (right) images of a transfected D10 T cell clone during coupling with Ag-pulsed APCs were recorded every 30 seconds. (MOV 4107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobelli, J., Chmura, S., Buxton, D. et al. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol 5, 531–538 (2004). https://doi.org/10.1038/ni1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing