Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional evidence for a single endodermal origin for the thymic epithelium

Abstract

T cell development depends critically on several distinct thymic epithelial cell types that are organized into two main compartments: cortex and medulla. The prevailing hypothesis suggests that these derive from ectoderm and endoderm, respectively. Here we show that lineage analysis provides no evidence for an ectodermal contribution to the thymic rudiment. We further demonstrate, via ectopic transplantation, that isolated pharyngeal endoderm can generate a functional thymus containing organized cortical and medullary regions and that this capacity is not potentiated by the presence of pharyngeal ectoderm. These data establish that the cortical and medullary thymic epithelial compartments derive from a single germ layer, the endoderm, thus refuting the 'dual-origin' model of thymic epithelial ontogeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological and TUNEL analysis of early thymus organogenesis.
Figure 2: Fate of pharyngeal ectoderm lineage cells.
Figure 3: Potency of the pharyngeal endoderm.
Figure 4: Analysis of grafts recovered from endoderm-only recipients demonstrates the presence of cortical and medullary thymic epithelial cells.
Figure 5: Analysis of grafts recovered from endoderm-only recipients demonstrates the presence of differentiating thymocytes.
Figure 6: Endoderm-derived thymi can support thymocyte development.
Figure 7: Histological analysis of grafts recovered from whole-arch recipients.

Similar content being viewed by others

References

  1. Boyd, R.L. et al. The thymic microenvironment. Immunol. Today 14, 445–459 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Klug, D.B. et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc. Natl. Acad. Sci. USA 95, 11822–11827 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson, G., Moore, N.C., Owen, J.J.T. & Jenkinson, E.J. Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, G. & Jenkinson, E. Lymphostromal interactions in thymus development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Prockop, S.E. et al. Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J. Immunol. 169, 4354–4361 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Petrie, H.T. Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol. Rev. 189, 8–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Plotkin, J., Prockop, S.E., Lepique, A. & Petrie, H.T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Auerbach, R. Morphogenetic interactions in the development of the mouse thymus gland. Dev. Biol. 2, 271–284 (1960).

    Article  CAS  PubMed  Google Scholar 

  13. Bockman, D.E. & Kirby, M.L. Dependence of thymus development on derivatives of the neural crest. Science 223, 498–500 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Le Lievre, C.S. & Le Douarin, N.M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morph. 34, 125–154 (1975).

    CAS  PubMed  Google Scholar 

  15. Manley, N.R. Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Semin. Immunol. 12, 421–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Cordier, A.C. & Heremans, J.F. Nude mouse embryo:ectodermal nature of the primordial thymic defect. Scand. J. Immunol. 4, 193–196 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Cordier, A.C. & Haumont, S.M. Development of thymus, parathyroids and ultimo-branchial bodies in NMRI and nude mice. Am. J. Anat. 157, 227–263 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Manley, N.R. & Blackburn, C.C. A developmental look at thymus organogenesis: Where do the non-hematopoetic cells in the thymus come from? Curr. Opin. Immunol. 15, 225–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Janeway, C.A., Travers, P., Walport, M. & Shlomchik, M.J. in Immunobiology: The Immune System in Health and Disease 230–254 (Garland, New York, 2001).

    Google Scholar 

  20. Parham, P. in The Immune System 107–128 (Garland, New York, 2000).

    Google Scholar 

  21. Le Douarin, N.M. & Jotereau, F.V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, C. Studies on the thymus of the mammal XIV. histology and histochemistry of embryonic and early postnatal thymuses of C57BL/6 and AKR strain mice. Am. J. Anat. 116, 611–630 (1965).

    Article  CAS  PubMed  Google Scholar 

  23. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Moore-Scott, B.A., Gordon, J., Blackburn, C.C., Condie, B.G. & Manley, N.R. A new serum-free in vitro culture technique for mid gestation mouse embryos. Genesis 35, 164–168 (2003).

    Article  PubMed  Google Scholar 

  25. Ishii, Y., Abu-Elmagd, M. & Scotting, P.J. Sox3 expression defines a common primordium for the epibranchial placodes in chick. Dev. Biol. 236, 344–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Flanagan, S.P. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295 (1966).

    Article  CAS  PubMed  Google Scholar 

  27. Bennett, A.R. et al. Identification and characterization of thymic epithelial progenitor cells. Immunity 16, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. & Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Blackburn, C.C. et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc. Natl. Acad. Sci. USA 93, 5742–5746 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imami, N., Ladyman, H.M., Spanopoulou, E. & Ritter, M.A. A novel adhesion molecule in the murine thymic microenvironment: Functional and biochemical analysis. Dev. Immunol. 2, 161–173 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rouse, R.V., Bolin, L.M., Bender, J.R. & Kyewski, B. Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. J. Histochem. Cytochem. 36, 1511–1517 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Godfrey, D.I., Izon, D.J., Tucek, C.L., Wilson, T.J. & Boyd, R.L. The phenotypic heterogeneity of mouse thymic stromal cells. Immunol. Today 70, 66–74 (1990).

    CAS  Google Scholar 

  34. Jenkinson, E.J., van Ewijk, W. & Owen, J.T.T. Major histocompatibility complex antigen expression on the epithelium of the developing thymus in normal and nude mice. J. Exp. Med. 153, 280–292 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Gill, J., Malin, M., Hollander, G.A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat. Immunol. 3, 635–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Van Ewijk, W., Jenkinson, E.J. & Owen, J.J. Detection of Thy-1, T-200, Lyt-1 and Lyt-2-bearing cells in the developing lymphoid organs of the mouse embryo in vivo and in vitro . Eur. J. Immunol. 12, 262–271 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Blackburn, C.C. & Manley, N.R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, X., Rowitch, D.H., Soriano, P., McMahon, A.P. & Sucov, H.M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    CAS  PubMed  Google Scholar 

  39. Anderson, G., Jenkinson, E.J., Moore, N.C. & Owen, J.J.T. MHC class II positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Revest, J.M., Suniara, R.K., Kerr, K., Owen, J.J. & Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167, 1954–1961 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wells, J.M. & Melton, D.A. Vertebrate endoderm development. Annu. Rev. Cell. Dev. Biol. 15, 393–410 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Balciunaite, G. et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat. Immunol. 3, 1102–1108 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gordon, J., Bennett, A.R., Blackburn, C.C. & Manley, N.R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech. Dev. 103, 141–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H. & Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Su, D., Ellis, S., Napier, A., Lee, K. & Manley, N.R. Hoxa3 and Pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev. Biol. 236, 316–329 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Medvinsky for critical discussion, C.L. Bennett for assistance with flow cytometry and Biomed Unit staff for animal care. Supported by the Medical Research Council, UK (C.C.B., J.G., J.S. and V.A.W.), Leukaemia Research Fund, UK (C.C.B., N.B. and A.F.), National Institutes of Health-National Institute of Child Health and Human Development (HD035920 to N.R.M.) and Wellcome Trust (C.C.B. and N.R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Clare Blackburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, J., Wilson, V., Blair, N. et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5, 546–553 (2004). https://doi.org/10.1038/ni1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing