Functional evidence for a single endodermal origin for the thymic epithelium


T cell development depends critically on several distinct thymic epithelial cell types that are organized into two main compartments: cortex and medulla. The prevailing hypothesis suggests that these derive from ectoderm and endoderm, respectively. Here we show that lineage analysis provides no evidence for an ectodermal contribution to the thymic rudiment. We further demonstrate, via ectopic transplantation, that isolated pharyngeal endoderm can generate a functional thymus containing organized cortical and medullary regions and that this capacity is not potentiated by the presence of pharyngeal ectoderm. These data establish that the cortical and medullary thymic epithelial compartments derive from a single germ layer, the endoderm, thus refuting the 'dual-origin' model of thymic epithelial ontogeny.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Histological and TUNEL analysis of early thymus organogenesis.
Figure 2: Fate of pharyngeal ectoderm lineage cells.
Figure 3: Potency of the pharyngeal endoderm.
Figure 4: Analysis of grafts recovered from endoderm-only recipients demonstrates the presence of cortical and medullary thymic epithelial cells.
Figure 5: Analysis of grafts recovered from endoderm-only recipients demonstrates the presence of differentiating thymocytes.
Figure 6: Endoderm-derived thymi can support thymocyte development.
Figure 7: Histological analysis of grafts recovered from whole-arch recipients.


  1. 1

    Boyd, R.L. et al. The thymic microenvironment. Immunol. Today 14, 445–459 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Klug, D.B. et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc. Natl. Acad. Sci. USA 95, 11822–11827 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Anderson, G., Moore, N.C., Owen, J.J.T. & Jenkinson, E.J. Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73–99 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Anderson, G. & Jenkinson, E. Lymphostromal interactions in thymus development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Prockop, S.E. et al. Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J. Immunol. 169, 4354–4361 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Petrie, H.T. Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol. Rev. 189, 8–20 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Plotkin, J., Prockop, S.E., Lepique, A. & Petrie, H.T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Auerbach, R. Morphogenetic interactions in the development of the mouse thymus gland. Dev. Biol. 2, 271–284 (1960).

    CAS  Article  Google Scholar 

  13. 13

    Bockman, D.E. & Kirby, M.L. Dependence of thymus development on derivatives of the neural crest. Science 223, 498–500 (1984).

    CAS  Article  Google Scholar 

  14. 14

    Le Lievre, C.S. & Le Douarin, N.M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morph. 34, 125–154 (1975).

    CAS  PubMed  Google Scholar 

  15. 15

    Manley, N.R. Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Semin. Immunol. 12, 421–428 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Cordier, A.C. & Heremans, J.F. Nude mouse embryo:ectodermal nature of the primordial thymic defect. Scand. J. Immunol. 4, 193–196 (1975).

    CAS  Article  Google Scholar 

  17. 17

    Cordier, A.C. & Haumont, S.M. Development of thymus, parathyroids and ultimo-branchial bodies in NMRI and nude mice. Am. J. Anat. 157, 227–263 (1980).

    CAS  Article  Google Scholar 

  18. 18

    Manley, N.R. & Blackburn, C.C. A developmental look at thymus organogenesis: Where do the non-hematopoetic cells in the thymus come from? Curr. Opin. Immunol. 15, 225–232 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Janeway, C.A., Travers, P., Walport, M. & Shlomchik, M.J. in Immunobiology: The Immune System in Health and Disease 230–254 (Garland, New York, 2001).

    Google Scholar 

  20. 20

    Parham, P. in The Immune System 107–128 (Garland, New York, 2000).

    Google Scholar 

  21. 21

    Le Douarin, N.M. & Jotereau, F.V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40 (1975).

    CAS  Article  Google Scholar 

  22. 22

    Smith, C. Studies on the thymus of the mammal XIV. histology and histochemistry of embryonic and early postnatal thymuses of C57BL/6 and AKR strain mice. Am. J. Anat. 116, 611–630 (1965).

    CAS  Article  Google Scholar 

  23. 23

    Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Moore-Scott, B.A., Gordon, J., Blackburn, C.C., Condie, B.G. & Manley, N.R. A new serum-free in vitro culture technique for mid gestation mouse embryos. Genesis 35, 164–168 (2003).

    Article  Google Scholar 

  25. 25

    Ishii, Y., Abu-Elmagd, M. & Scotting, P.J. Sox3 expression defines a common primordium for the epibranchial placodes in chick. Dev. Biol. 236, 344–353 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Flanagan, S.P. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295 (1966).

    CAS  Article  Google Scholar 

  27. 27

    Bennett, A.R. et al. Identification and characterization of thymic epithelial progenitor cells. Immunity 16, 803–814 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. & Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–106 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Blackburn, C.C. et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc. Natl. Acad. Sci. USA 93, 5742–5746 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Imami, N., Ladyman, H.M., Spanopoulou, E. & Ritter, M.A. A novel adhesion molecule in the murine thymic microenvironment: Functional and biochemical analysis. Dev. Immunol. 2, 161–173 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Rouse, R.V., Bolin, L.M., Bender, J.R. & Kyewski, B. Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. J. Histochem. Cytochem. 36, 1511–1517 (1988).

    CAS  Article  Google Scholar 

  33. 33

    Godfrey, D.I., Izon, D.J., Tucek, C.L., Wilson, T.J. & Boyd, R.L. The phenotypic heterogeneity of mouse thymic stromal cells. Immunol. Today 70, 66–74 (1990).

    CAS  Google Scholar 

  34. 34

    Jenkinson, E.J., van Ewijk, W. & Owen, J.T.T. Major histocompatibility complex antigen expression on the epithelium of the developing thymus in normal and nude mice. J. Exp. Med. 153, 280–292 (1981).

    CAS  Article  Google Scholar 

  35. 35

    Gill, J., Malin, M., Hollander, G.A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat. Immunol. 3, 635–642 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Van Ewijk, W., Jenkinson, E.J. & Owen, J.J. Detection of Thy-1, T-200, Lyt-1 and Lyt-2-bearing cells in the developing lymphoid organs of the mouse embryo in vivo and in vitro . Eur. J. Immunol. 12, 262–271 (1982).

    CAS  Article  Google Scholar 

  37. 37

    Blackburn, C.C. & Manley, N.R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–287 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Jiang, X., Rowitch, D.H., Soriano, P., McMahon, A.P. & Sucov, H.M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Anderson, G., Jenkinson, E.J., Moore, N.C. & Owen, J.J.T. MHC class II positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Revest, J.M., Suniara, R.K., Kerr, K., Owen, J.J. & Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167, 1954–1961 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Wells, J.M. & Melton, D.A. Vertebrate endoderm development. Annu. Rev. Cell. Dev. Biol. 15, 393–410 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Balciunaite, G. et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat. Immunol. 3, 1102–1108 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Gordon, J., Bennett, A.R., Blackburn, C.C. & Manley, N.R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech. Dev. 103, 141–143 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H. & Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Su, D., Ellis, S., Napier, A., Lee, K. & Manley, N.R. Hoxa3 and Pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev. Biol. 236, 316–329 (2001).

    CAS  Article  Google Scholar 

Download references


We thank A. Medvinsky for critical discussion, C.L. Bennett for assistance with flow cytometry and Biomed Unit staff for animal care. Supported by the Medical Research Council, UK (C.C.B., J.G., J.S. and V.A.W.), Leukaemia Research Fund, UK (C.C.B., N.B. and A.F.), National Institutes of Health-National Institute of Child Health and Human Development (HD035920 to N.R.M.) and Wellcome Trust (C.C.B. and N.R.M.).

Author information



Corresponding author

Correspondence to C Clare Blackburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gordon, J., Wilson, V., Blair, N. et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5, 546–553 (2004).

Download citation

Further reading