Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fas ligation on macrophages enhances IL-1R1–Toll-like receptor 4 signaling and promotes chronic inflammation

Abstract

The nonapoptotic functions of Fas ligation are incompletely characterized. In contrast to expectations, we show here that Fas-deficient mice developed less-severe collagen-induced arthritis than did control mice. Despite having milder arthritis, Fas-deficient mice had more of the critical pro-inflammatory mediator interleukin-1β (IL-1β) in their joints, suggesting inefficient activation through IL-1 receptor 1 (IL-1R1) when Fas signaling is deficient. In primary human macrophages and macrophages from Fas- or Fas ligand (FasL)-deficient mice, interruption of Fas-FasL signaling suppressed nuclear factor-κB activation and cytokine expression induced by IL-1β and lipopolysaccharide. This cross-talk was mediated by the Fas-associated death domain through interaction with myeloid differentiation factor 88. These observations document a unique mechanism whereby Fas-FasL interactions enhance activation through the IL-1R1 or Toll-like receptor 4 pathway, which may contribute to the pathogenesis of chronic arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DBA/1lpr/lpr mice are resistant to collagen-induced arthritis.
Figure 2: Interruption of Fas ligation suppresses IL-1β- and LPS-induced cytokine expression.
Figure 3: LPS induces less IL-6 in lpr and gld macrophages.
Figure 4: Interruption of Fas ligation suppresses LPS- and IL-1β-induced NF-κB activation.
Figure 5: FADD suppresses MyD88-induced IL-6 and NF-κB promoter activation.
Figure 6: FADD modulates LPS- and IL-1β-induced cytokine expression.
Figure 7: Fas ligation reduces the association of FADD with MyD88.

Similar content being viewed by others

References

  1. Mulherin, D., Fitzgerald, O. & Bresnihan, B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 39, 115–124 (1996).

    Article  CAS  Google Scholar 

  2. Tak, P.P. et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 40, 217–225 (1997).

    Article  CAS  Google Scholar 

  3. Feldmann, M., Brennan, F.M. & Maini, R.N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).

    Article  CAS  Google Scholar 

  4. Bathon, J.M. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).

    Article  CAS  Google Scholar 

  5. Lipsky, P.E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  Google Scholar 

  6. Cohen, S. et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624 (2002).

    Article  CAS  Google Scholar 

  7. Wendling, D., Racadot, E. & Wijdenes, J. Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J. Rheumatol. 20, 259–262 (1993).

    CAS  Google Scholar 

  8. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  9. Termeer, C. et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  Google Scholar 

  10. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  Google Scholar 

  11. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  Google Scholar 

  12. Palmer, G. et al. Mice transgenic for intracellular interleukin-1 receptor antagonist type 1 are protected from collagen-induced arthritis. Eur. J. Immunol. 33, 434–440 (2003).

    Article  CAS  Google Scholar 

  13. Williams, R.O., Marinova-Mutafchieva, L., Feldmann, M. & Maini, R.N. Evaluation of TNF-α and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-α/anti-CD4 therapy. J. Immunol. 165, 7240–7245 (2000).

    Article  CAS  Google Scholar 

  14. Yoshino, S., Sasatomi, E., Mori, Y. & Sagai, M. Oral administration of lipopolysaccharide exacerbates collagen-induced arthritis in mice. J. Immunol. 163, 3417–3422 (1999).

    CAS  Google Scholar 

  15. Choe, J.Y., Crain, B., Wu, S.R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J. Exp. Med. 197, 537–542 (2003).

    Article  CAS  Google Scholar 

  16. Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  Google Scholar 

  17. Cohen, P.L. & Eisenberg, R.A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  Google Scholar 

  18. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol. 10, 640–648 (2000).

    Article  CAS  Google Scholar 

  19. Hu, W.H., Johnson, H. & Shu, H.B. Activation of NF-κB by FADD, Casper, and caspase-8. J. Biol. Chem. 275, 10838–10844 (2000).

    Article  CAS  Google Scholar 

  20. Ahn, J.H. et al. Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-κB-dependent gene expression. J. Biol. Chem. 276, 47100–47106 (2001).

    Article  CAS  Google Scholar 

  21. Kabra, N.H., Kang, C., Hsing, L.C., Zhang, J. & Winoto, A. T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl. Acad. Sci. USA 98, 6307–6312 (2001).

    Article  CAS  Google Scholar 

  22. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  Google Scholar 

  23. Perlman, H. et al. Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthritis Rheum. 44, 21–30 (2001).

    Article  CAS  Google Scholar 

  24. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    Article  CAS  Google Scholar 

  25. Yao, P.M. & Tabas, I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J. Biol. Chem. 275, 23807–23813 (2000).

    Article  CAS  Google Scholar 

  26. Georganas, C. et al. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-κB but not C/EBPβ or c-Jun. J. Immunol. 165, 7199–7206 (2000).

    Article  CAS  Google Scholar 

  27. Chinnaiyan, A.M. et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem. 271, 4961–4965 (1996).

    Article  CAS  Google Scholar 

  28. Eickelberg, O. et al. Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-κB in primary human vascular smooth muscle cells. Circulation 99, 2276–2282 (1999).

    Article  CAS  Google Scholar 

  29. Bradham, C.A. et al. The mitochondrial permeability transition is required for tumor necrosis factor α-mediated apoptosis and cytochrome c release. Mol. Cell. Biol. 18, 6353–6364 (1998).

    Article  CAS  Google Scholar 

  30. Aliprantis, A.O., Yang, R.B., Weiss, D.S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19, 3325–3336 (2000).

    Article  CAS  Google Scholar 

  31. Scaffidi, C., Krammer, P.H. & Peter, M.E. Isolation and analysis of components of CD95 (APO-1/Fas) death-inducing signaling complex. Methods: A Companion to Methods Enzymol. 17, 287–291 (1999).

    Article  CAS  Google Scholar 

  32. Pope, R.M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Article  CAS  Google Scholar 

  33. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    Article  CAS  Google Scholar 

  34. Varfolomeev, E.E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  Google Scholar 

  35. Yeh, W.C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  Google Scholar 

  36. Chaudhary, P.M. et al. Activation of the NF-κB pathway by caspase 8 and its homologs. Oncogene 19, 4451–4460 (2000).

    Article  CAS  Google Scholar 

  37. Ponton, A., Clement, M.V. & Stamenkovic, I. The CD95 (APO-1/Fas) receptor activates NF-κB independently of its cytotoxic function. J. Biol. Chem. 271, 8991–8995 (1996).

    Article  CAS  Google Scholar 

  38. Russo, M.P., Bennett, B.L., Manning, A.M., Brenner, D.A. & Jobin, C. Differential requirement for NF-κB-inducing kinase in the induction of NF-κB by IL-1β, TNF-α, and Fas. Am. J. Physiol. Cell Physiol. 283, C347–357 (2002).

    Article  CAS  Google Scholar 

  39. Pagliari, L.J., Perlman, H., Liu, H. & Pope, R.M. Macrophages require constitutive NF-κB activation to maintain A1 expression and mitochondrial homeostasis. Mol. Cell. Biol. 20, 8855–8865 (2000).

    Article  CAS  Google Scholar 

  40. Park, D.R. et al. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J. Immunol. 170, 6209–6216 (2003).

    Article  CAS  Google Scholar 

  41. Shain, K.H., Landowski, T.H. & Dalton, W.S. Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J. Immunol. 168, 2544–2553 (2002).

    Article  CAS  Google Scholar 

  42. Aoudjit, F. & Vuori, K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol. 152, 633–643 (2001).

    Article  CAS  Google Scholar 

  43. Liu, H. et al. TNF-α gene expression in macrophages: regulation by NF-κB is independent of c-Jun or C/EBPβ. J. Immunol. 164, 4277–4285 (2000).

    Article  CAS  Google Scholar 

  44. Bannerman, D.D., Tupper, J.C., Kelly, J.D., Winn, R.K. & Harlan, J.M. The Fas-associated death domain protein suppresses activation of NF-κB by LPS and IL-1β. J. Clin. Invest. 109, 419–425 (2002).

    Article  CAS  Google Scholar 

  45. Wajant, H. et al. Dominant-negative FADD inhibits TNFR60-, Fas/Apo1- and TRAIL-R/Apo2-mediated cell death but not gene induction. Curr. Biol. 8, 113–116 (1998).

    Article  CAS  Google Scholar 

  46. Hsu, H., Shu, H.B., Pan, M.G. & Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  47. Fukui, M., Imamura, R., Umemura, M., Kawabe, T. & Suda, T. Pathogen-associated molecular patterns sensitize macrophages to Fas ligand-induced apoptosis and IL-1β release. J. Immunol. 171, 1868–1874 (2003).

    Article  CAS  Google Scholar 

  48. Rescigno, M. et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1β, and the production of interferon γ in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J. Exp. Med. 192, 1661–1668 (2000).

    Article  CAS  Google Scholar 

  49. Singer, G.G., Carrera, A.C., Marshak-Rothstein, A., Martinez, C. & Abbas, A.K. Apoptosis, Fas and systemic autoimmunity: the MRL-lpr/lpr model. Curr. Opin. Immunol. 6, 913–920 (1994).

    Article  CAS  Google Scholar 

  50. Wooley, P.H., Luthra, H.S., Stuart, J.M. & David, C.S. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J. Exp. Med. 154, 688–700 (1981).

    Article  CAS  Google Scholar 

  51. Ibrahim, S.M., Koczan, D. & Thiesen, H.J. Gene-expression profile of collagen-induced arthritis. J. Autoimmun. 18, 159–167 (2002).

    Article  Google Scholar 

  52. Liu, H., Perlman, H., Pagliari, L.J. & Pope, R.M. Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-κB, Bad, or caspase activation. J. Exp. Med. 194, 113–126 (2001).

    Article  CAS  Google Scholar 

  53. Scaffidi, C. et al. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274, 22532–22538 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.E. Peter and V.M. Dixit for providing the FADD and dominant negative FADD plasmids; J. Karras for providing the antisense FADD deoxyoligonucleotides; and R. Medzhitov for providing the MyD88 plasmid. We also thank H. Perlman, P.H. Stern, N.A. Clipstone and A. Lin for critical review of the manuscript; M.E. Peter for advice on the immunoprecipitation experiments; C.J. Zander for technical assistance; and H.-J. Kreutzer for help evaluating joint histopathology. Supported by the National Institutes of Health (R01-AR049217) and The Veterans Administration Research Service (Merit Review), the National and Greater Chicagoland Chapters of the Arthritis Foundation and Deutsche Forschungsgemeinschaft (IB 24/3-1 to S.M.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M Pope.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Liu, H., Tu-Rapp, H. et al. Fas ligation on macrophages enhances IL-1R1–Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5, 380–387 (2004). https://doi.org/10.1038/ni1054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing