Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-domain–dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation

Abstract

The N-terminal protein interaction domain (N-domain) of the signal transducer and activator of transcription-4 (STAT4) is believed to stabilize interactions between two phosphorylated STAT4 dimers to form STAT4 tetramers. Here, we show that nonphosphorylated STAT4 dimers form in vivo before cytokine receptor–driven activation. Mutations in the N-domain dimerization interface abolished assembly of nonphosphorylated STAT4 dimers and prevented STAT4 phosphorylation mediated by cytokine receptors. In addition, N-domain dimerization occurred for other STAT family members but was homotypic in character. This implies a conserved role for N-domain dimerization, which might include influencing interactions with cytokine receptors, favoring homodimer formation or accelerating formation of the phosphorylated STAT dimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of STAT4 dimers produced by crystallographic symmetry to identify the physiologic dimer.
Figure 2: Mutational analysis of STAT4 N-domain dimerization.
Figure 3: Homotypic N-domain dimerization in the STAT family.
Figure 4: Formation of nonphosphorylated STAT4 dimers is mediated by N-domains.
Figure 5: Formation of nonphosphorylated STAT4 dimers is required for STAT4 activation and function.
Figure 6: N-domain dimerization–dependent STAT4 activation in vivo.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jacobson, N.G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

    Article  CAS  Google Scholar 

  2. Bacon, C.M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl. Acad. Sci. USA 92, 7307–7311 (1995).

    Article  CAS  Google Scholar 

  3. Kaplan, M.H. et al. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  Google Scholar 

  4. Horvath, C.M., Wen, Z. & Darnell, J.E. Jr. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev. 9, 984–994 (1995).

    Article  CAS  Google Scholar 

  5. Seidel, H.M. et al. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc. Natl. Acad. Sci. USA 92, 3041–3045 (1995).

    Article  CAS  Google Scholar 

  6. Ihle, J.N. STATs: signal transducers and activators of transcription. Cell 84, 331–334 (1996).

    Article  CAS  Google Scholar 

  7. Xu, X., Sun, Y.L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

    Article  CAS  Google Scholar 

  8. Symes, A. et al. STAT proteins participate in the regulation of the vasoactive intestinal peptide gene by the ciliary neurotrophic factor family of cytokines. Mol. Endocrinol. 8, 1750–1763 (1994).

    CAS  PubMed  Google Scholar 

  9. Dajee, M. et al. Prolactin induction of the α2-Macroglobulin gene in rat ovarian granulosa cells: stat 5 activation and binding to the interleukin-6 response element. Mol. Endocrinol. 10, 171–184 (1996).

    CAS  PubMed  Google Scholar 

  10. Chatterjee-Kishore, M. et al. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J. 19, 4111–4122 (2000).

    Article  CAS  Google Scholar 

  11. Meyer, T., Gavenis, K. & Vinkemeier, U. Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp. Cell Res. 272, 45–55 (2002).

    Article  CAS  Google Scholar 

  12. Darnell, J.E. Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  Google Scholar 

  13. Leaman, D.W. et al. Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 10, 1578–1588 (1996).

    Article  CAS  Google Scholar 

  14. Schindler, C. & Darnell, J.E. Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64, 621–651 (1995).

    Article  CAS  Google Scholar 

  15. Kisseleva, T. et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  Google Scholar 

  16. Ndubuisi, M.I. et al. Cellular physiology of STAT3: where's the cytoplasmic monomer? J. Biol. Chem. 274, 25499–25509 (1999).

    Article  CAS  Google Scholar 

  17. Haan, S. et al. Cytoplasmic STAT proteins associate prior to activation. Biochem. J. 345, 417–421 (2000).

    Article  CAS  Google Scholar 

  18. Shah, M. et al. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J. Biol. Chem. 277, 45662–45669 (2002).

    Article  CAS  Google Scholar 

  19. Guo, G.G. et al. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J. Interferon Cytokine Res. 22, 555–563 (2002).

    Article  CAS  Google Scholar 

  20. Braunstein, J. et al. STATs dimerize in the absence of phosphorylation. J. Biol. Chem. (2003).

  21. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839 (1998).

    Article  CAS  Google Scholar 

  22. Vinkemeier, U. et al. Structure of the amino-terminal protein interaction domain of STAT-4. Science 279, 1048–1052 (1998).

    Article  CAS  Google Scholar 

  23. Murphy, T.L. et al. Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Mol. Cell Biol. 20, 7121–7131 (2000).

    Article  CAS  Google Scholar 

  24. Chang, H.C. et al. Stat4 requires the N-terminal domain for efficient phosphorylation. J. Biol. Chem. (2003).

  25. Chen, X. et al. A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci. 12, 361–365 (2003).

    Article  CAS  Google Scholar 

  26. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  27. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  28. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  29. Beranger, F. et al. Getting more from the two-hybrid system: N-terminal fusions to LexA are efficient and sensitive baits for two-hybrid studies. Nucleic Acids Res. 25, 2035–2036 (1997).

    Article  CAS  Google Scholar 

  30. Farrar, J.D. et al. Selective loss of type I interferon–induced STAT4 activation caused by a minisatellite insertion in mouse STAT2. Nat. Immunol. 1, 65–69 (2000).

    Article  CAS  Google Scholar 

  31. Farrar, J.D. & Murphy, K.M. Type I interferons and T helper development. Immunol. Today 21, 484–489 (2000).

    Article  CAS  Google Scholar 

  32. Yang, J. et al. Induction of interferon-γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 29, 548–555 (1999).

    Article  CAS  Google Scholar 

  33. Yang, J. et al. IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nat. Immunol. 2, 157–164 (2001).

    Article  CAS  Google Scholar 

  34. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  35. Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  Google Scholar 

  36. John, S. et al. The significance of tetramerization in promoter recruitment by Stat5. Mol. Cell Biol. 19, 1910–1918 (1999).

    Article  CAS  Google Scholar 

  37. Soldaini, E. et al. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol. Cell Biol. 20, 389–401 (2000).

    Article  CAS  Google Scholar 

  38. Farrar, J.D. et al. Recruitment of Stat4 to the human interferon-α/β receptor requires activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

    Article  CAS  Google Scholar 

  39. Ihle, J.N. & Kerr, I.M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11, 69–74 (1995).

    Article  CAS  Google Scholar 

  40. Cho, S.S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

    CAS  PubMed  Google Scholar 

  41. Hubbard, S.J., Campbell, S.F. & Thornton, J.M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J. Mol. Biol. 220, 507–530 (1991).

    Article  CAS  Google Scholar 

  42. Evan, G.I. et al. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

  43. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  Google Scholar 

  44. Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl. Acad. Sci. USA 96, 3888–3893 (1999).

    Article  CAS  Google Scholar 

  45. Morinobu, A. et al. STAT4 serine phosphorylation is critical for IL-12-induced IFN-γ production but not for cell proliferation. Proc. Natl. Acad. Sci. USA 99, 12281–12286 (2002).

    Article  CAS  Google Scholar 

  46. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G.R. Stark (Lerner Research Institute, Cleveland, Ohio, USA) for providing the U3A cells, and J.D. Farrar (University of Texas Southwestern Medical Center, Dallas, Texas, USA) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, N., Brett, T., Murphy, T. et al. N-domain–dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol 5, 208–215 (2004). https://doi.org/10.1038/ni1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing