Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1–mutant mice

Abstract

The generation of protective antibodies requires somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin genes. Here we show that mice mutant for exonuclease 1 (Exo1), which participates in DNA mismatch repair (MMR), have decreased CSR and changes in the characteristics of SHM similar to those previously observed in mice mutant for the MMR protein Msh2. Exo1 is thus the first exonuclease shown to be involved in SHM and CSR. The phenotype of Exo1−/− mice and the finding that Exo1 and Mlh1 are physically associated with mutating variable regions support the idea that Exo1 and MMR participate directly in SHM and CSR.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FACS analysis of in vitro–switched splenocytes.
Figure 2: Serum ELISA of anti-NP immunoglobulin response.
Figure 3: Mutation analysis of the immunoglobulin gene.
Figure 4: Chromatin immunoprecipitation (ChIP) experiments for Exo1 and Mlh1 in the BL2 Burkitt's lymphoma cell line.

Similar content being viewed by others

References

  1. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  2. Rogozin, I.B. & Kolchanov, N.A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

    Article  CAS  Google Scholar 

  3. Stavnezer, J. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245, 127–168 (2000).

    CAS  PubMed  Google Scholar 

  4. Storb, U. Progress in understanding the mechanism and consequences of somatic hypermutation. Immunol. Rev. 162, 5–11 (1998).

    Article  CAS  Google Scholar 

  5. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat. Rev. Mol. Cell Biol. 2, 493–503 (2001).

    Article  CAS  Google Scholar 

  6. Martin, A. & Scharff, M.D. AID and mismatch repair in antibody diversification. Nat. Rev. Immunol. 2, 605–614 (2002).

    Article  CAS  Google Scholar 

  7. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  Google Scholar 

  8. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  Google Scholar 

  9. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  Google Scholar 

  10. Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A. & Bhagwat, A.S. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31, 2990–2994 (2003).

    Article  CAS  Google Scholar 

  11. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  Google Scholar 

  12. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  13. Rada, C., Ehrenstein, M.R., Neuberger, M.S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  Google Scholar 

  14. Zeng, X. et al. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat. Immunol. 2, 537–541 (2001).

    Article  CAS  Google Scholar 

  15. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M.D. Somatic mutation in MSH3, MSH6, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).

    Article  CAS  Google Scholar 

  16. Buermeyer, A.B., Deschenes, S.M., Baker, S.M. & Liskay, R.M. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33, 533–564 (1999).

    Article  CAS  Google Scholar 

  17. Evans, E. & Alani, E. Roles for mismatch repair factors in regulating genetic recombination. Mol. Cell Biol. 20, 7839–7844 (2000).

    Article  CAS  Google Scholar 

  18. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).

    Article  CAS  Google Scholar 

  19. Palombo, F. et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912–1914 (1995).

    Article  CAS  Google Scholar 

  20. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10, 1433–1442 (1996).

    Article  CAS  Google Scholar 

  21. Szankasi, P. & Smith, G.R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267, 1166–1169 (1995).

    Article  CAS  Google Scholar 

  22. Genschel, J., Bazemore, L.R. & Modrich, P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J. Biol. Chem. 277, 13302–13311 (2002).

    Article  CAS  Google Scholar 

  23. Tishkoff, D.X. et al. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc. Natl. Acad. Sci. USA 94, 7487–7492 (1997).

    Article  CAS  Google Scholar 

  24. Tran, P.T., Simon, J.A. & Liskay, R.M. Interactions of Exo1p with components of MutLα in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 98, 9760–9765 (2001).

    Article  CAS  Google Scholar 

  25. Schmutte, C., Sadoff, M.M., Shim, K.S., Acharya, S. & Fishel, R. The interaction of DNA mismatch repair proteins with human exonuclease I. J. Biol. Chem. 276, 33011–33018 (2001).

    Article  CAS  Google Scholar 

  26. Amin, N.S., Nguyen, M.N., Oh, S. & Kolodner, R.D. exo1-dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol. Cell Biol. 21, 5142–5155 (2001).

    Article  CAS  Google Scholar 

  27. Wei, K. et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility and male and female sterility. Genes Dev. 17, 603–614 (2003).

    Article  CAS  Google Scholar 

  28. Schrader, C.E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).

    Article  CAS  Google Scholar 

  29. Ehrenstein, M.R., Rada, C., Jones, A.M., Milstein, C. & Neuberger, M.S. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc. Natl. Acad. Sci. USA 98, 14553–14558 (2001).

    Article  CAS  Google Scholar 

  30. Schrader, C.E., Vardo, J. & Stavnezer, J. Role for mismatch repair proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J. Exp. Med. 195, 367–373 (2002).

    Article  CAS  Google Scholar 

  31. Takahashi, Y., Dutta, P.R., Cerasoli, D.M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).

    Article  CAS  Google Scholar 

  32. Frey, S. et al. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity 9, 127–134 (1998).

    Article  CAS  Google Scholar 

  33. Denepoux, S. et al. Induction of somatic mutation in a human B cell line in vitro . Immunity 6, 35–46 (1997).

    Article  CAS  Google Scholar 

  34. Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl. Acad. Sci. USA 98, 7976–7981 (2001).

    Article  CAS  Google Scholar 

  35. Woo, C.J., Martin, A. & Scharff, M.D. Induction of hypermutation is associated with modifications of variable region chromatin in BL2 cells. Immunity 19, 479–489 (2003).

    Article  CAS  Google Scholar 

  36. Bemark, M. et al. Somatic hypermutation in the absence of DNA-PK or Rag1 activity. J. Exp. Med. 192, 1509–1514 (2000).

    Article  CAS  Google Scholar 

  37. Manis, J.P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).

    Article  CAS  Google Scholar 

  38. Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778 (2003).

    Article  CAS  Google Scholar 

  39. Vora, K.A. et al. Severe attenuation of the B cell immune response in Msh2-deficient mice. J. Exp. Med. 189, 471–481 (1999).

    Article  CAS  Google Scholar 

  40. Alabyev, B. & Manser, T. Bcl-2 rescues the germinal center response but does not alter the V gene somatic hypermutation spectrum in MSH2-deficient mice. J. Immunol. 169, 3819–3824 (2002).

    Article  CAS  Google Scholar 

  41. Kim, N., Bozek, G., Lo, J.C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).

    Article  CAS  Google Scholar 

  42. Winter, D.B. et al. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl. Acad. Sci. USA 95, 6953–6958 (1998).

    Article  CAS  Google Scholar 

  43. Schrader, C.E., Vardo, J. & Stavnezer, J. Mlh1 can function in antibody class switch recombination independently of Msh2. J. Exp. Med. 197, 1377–1383 (2003).

    Article  CAS  Google Scholar 

  44. Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break and repair pathway of somatic mutation. Genetics 158, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109 (Suppl.), S35–S44 (2002).

    Article  CAS  Google Scholar 

  46. Phung, Q.H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).

    Article  CAS  Google Scholar 

  47. Ehrenstein, M.R. & Neuberger, M.S. Deficiency in msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    Article  CAS  Google Scholar 

  48. Wang, T.F., Kleckner, N. & Hunter, N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc. Natl. Acad. Sci. USA 96, 13914–13919 (1999).

    Article  CAS  Google Scholar 

  49. Tsubouchi, H. & Ogawa, H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae . Mol. Biol. Cell 11, 2221–2233 (2000).

    Article  CAS  Google Scholar 

  50. Sack, S.Z., Bardwell, P.D. & Scharff, M.D. Testing the reverse transcriptase model of somatic mutation. Mol. Immunol. 38, 303–311 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health: 5T32 CA 09173 (P.D.B.), T326 MO 7491 (C.J.W.), CA 76329 and CA 93484 (W.E.), AI 53362, CA102705 and CA72649 (M.D.S.). A.M. and Z.L. are recipients of Cancer Research Institute Fellowships and A.M. is currently a Special Fellow from the Leukemia and Lymphoma Society. W.E. is also supported by the Irma T. Hirschl Career Scientist Award. M.D.S. has the additional support of the Harry Eagle Chair provided by the Women's Division of the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D Scharff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardwell, P., Woo, C., Wei, K. et al. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1–mutant mice. Nat Immunol 5, 224–229 (2004). https://doi.org/10.1038/ni1031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing