Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens

Abstract

Microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. However, ECM components can also serve as an integral part of the innate immunity. Mice lacking expression of mindin (spondin 2), a highly conserved ECM protein, have an impaired ability to clear bacterial infection, and mindin-deficient macrophages show defective responses to a broad spectrum of microbial stimuli. Moreover, mindin binds directly to bacteria and their components and functions as an opsonin for macrophage phagocytosis of bacteria. Thus, mindin is essential in the initiation of the innate immune response and represents a unique pattern-recognition molecule in the ECM for microbial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of mouse mindin (spondin 2).
Figure 2: Mindin-deficient mice are resistant to LPS-induced septic shock.
Figure 3: Defective responses to various microbial stimuli by mindin-deficient macrophages and mast cells.
Figure 4: Impaired bacterial clearance in the lungs of mindin-deficient mice.
Figure 5: Mindin agglutinates bacteria and binds LPS and LTA.
Figure 6: Mindin functions as an opsonin for macrophage phagocytosis.
Figure 7: Cell signaling in mindin-deficient macrophages stimulated with LPS and TNF.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  2. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  3. Fraser, I.P., Koziel, H. & Ezekowitz, R.A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin. Immunol. 10, 363–372 (1998).

    Article  CAS  Google Scholar 

  4. Crouch, E. & Wright, J.R. Surfactant proteins a and d and pulmonary host defense. Annu. Rev. Physiol. 63, 521–554 (2001).

    Article  CAS  Google Scholar 

  5. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  6. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  7. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    CAS  Google Scholar 

  8. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  9. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  Google Scholar 

  10. Qureshi, S.T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  Google Scholar 

  11. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  12. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  13. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  Google Scholar 

  14. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  15. Hay, E.D. (ed.). Cell Biology of Extracellular Matrix. 2nd edn. 1–468 (Plenum, New York, 1991).

    Google Scholar 

  16. Patti, J.M., Allen, B., McGavin, M.J. & Hook, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 585–617 (1994).

    Article  CAS  Google Scholar 

  17. Westerlund, B. & Korhonen, T.K. Bacterial proteins binding to the mammalian extracellular matrix. Mol. Microbiol. 9, 687–694 (1993).

    Article  CAS  Google Scholar 

  18. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  Google Scholar 

  19. Klar, A., Baldassare, M. & Jessell, T.M. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 69, 95–110 (1992).

    Article  CAS  Google Scholar 

  20. Feinstein, Y. et al. F-spondin and mindin: two structurally and functionally related genes expressed in the hippocampus that promote outgrowth of embryonic hippocampal neurons. Development 126, 3637–3648 (1999).

    CAS  PubMed  Google Scholar 

  21. Higashijima, S., Nose, A., Eguchi, G., Hotta, Y. & Okamoto, H. Mindin/F-spondin family: novel ECM proteins expressed in the zebrafish embryonic axis. Dev. Biol. 192, 211–227 (1997).

    Article  CAS  Google Scholar 

  22. Umemiya, T., Takeichi, M. & Nose, A. M-spondin, a novel ECM protein highly homologous to vertebrate F-spondin, is localized at the muscle attachment sites in the Drosophila embryo. Dev. Biol. 186, 165–176 (1997).

    Article  CAS  Google Scholar 

  23. Manda, R. et al. Identification of genes (SPON2 and C20orf2) differentially expressed between cancerous and noncancerous lung cells by mRNA differential display. Genomics 61, 5–14 (1999).

    Article  CAS  Google Scholar 

  24. Adams, J.C. & Tucker, R.P. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev. Dyn. 218, 280–299 (2000).

    Article  CAS  Google Scholar 

  25. Morrison, D.C. & Ryan, J.L. Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417–432 (1987).

    Article  CAS  Google Scholar 

  26. Raetz, C.R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  Google Scholar 

  27. Galli, S.J., Maurer, M. & Lantz, C.S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol. 11, 53–59 (1999).

    Article  CAS  Google Scholar 

  28. Malaviya, R. & Abraham, S.N. Mast cell modulation of immune responses to bacteria. Immunol. Rev. 179, 16–24 (2001).

    Article  CAS  Google Scholar 

  29. Supajatura, V. et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 167, 2250–2256 (2001).

    Article  CAS  Google Scholar 

  30. Tobias, P.S., Soldau, K. & Ulevitch, R.J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J. Biol. Chem. 264, 10867–10871 (1989).

    CAS  PubMed  Google Scholar 

  31. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  Google Scholar 

  32. Sastry, K. & Ezekowitz, R.A. Collectins: pattern recognition molecules involved in first line host defense. Curr. Opin. Immunol. 5, 59–66 (1993).

    Article  CAS  Google Scholar 

  33. Feizi, T. Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000).

    Article  CAS  Google Scholar 

  34. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  Google Scholar 

  35. Jack, D.L., Klein, N.J. & Turner, M.W. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol. Rev. 180, 86–99 (2001).

    Article  CAS  Google Scholar 

  36. Devyatyarova-Johnson, M. et al. The lipopolysaccharide structures of Salmonella enterica serovar Typhimurium and Neisseria gonorrheae determine the attachment of human mannose-binding lectin to intact organisms. Infect. Immun. 68, 3894–3899 (2000).

    Article  CAS  Google Scholar 

  37. Jiang, G.Z., Sugiyama, T., Kato, Y., Koide, N. & Yokochi, T. Binding of mannose-binding protein to Klebsiella O3 lipopolysaccharide possessing the mannose homopolysaccharide as the O-specific polysaccharide and its relation to complement activation. Infect. Immun. 63, 2537–2540 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Polotsky, V.Y., Fischer, W., Ezekowitz, R.A. & Joiner, K.A. Interactions of human mannose-binding protein with lipoteichoic acids. Infect. Immun. 64, 380–383 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McCormack, F.X. & Whitsett, J.A. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Invest. 109, 707–712 (2002).

    Article  CAS  Google Scholar 

  40. LeVine, A.M. et al. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J. Immunol. 158, 4336–4340 (1997).

    CAS  PubMed  Google Scholar 

  41. LeVine, A.M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940 (2000).

    Article  CAS  Google Scholar 

  42. Takahashi, K. et al. Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes Infect. 4, 773–784 (2002).

    Article  CAS  Google Scholar 

  43. Muroi, M. & Tanamoto, K. The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kB through human toll-like receptor 4. Infect. Immun. 70, 6043–6047 (2002).

    Article  CAS  Google Scholar 

  44. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  Google Scholar 

  45. Guo, J. et al. Regulation of the TCRa repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  Google Scholar 

  46. Malaviya, R. & Abraham, S.N. Interaction of bacteria with mast cells. Methods Enzymol. 253, 27–43 (1995).

    Article  CAS  Google Scholar 

  47. Campbell, P.A., Canono, B.P. & Drevets, D.A. Measurement of bacterial ingestion and killing by macrophages. In Current Protocols in Immunology (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. and Strober, W.) 14.6.1–14.6.13 (John Wiley & Sons, Hoboken, New Jersey, 1996).

    Google Scholar 

  48. Currie, A.J., Stewart, G.A. & McWilliam, A.S. Alveolar macrophages bind and phagocytose allergen-containing pollen starch granules via C-type lectin and integrin receptors: implications for airway inflammatory disease. J. Immunol. 164, 3878–3886 (2000).

    Article  CAS  Google Scholar 

  49. Saitoh, S. Arudchandran, R., Manetz, T.S., Zhang, W., Sommers, C.L., Love, P.E., Rivera, J. & Samelson, L.E. LAT is essential for FcεRI-mediated mast cell activation. Immunity 12, 525–535 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Cook for flow cytometric analysis, and J.R. Wright, L. Hajjar and C.B. Wilson for critically reading this manuscript. This work was supported by National Institutes of Health grant R01 AI54685 (to Y.-W. H.) and the Howard Hughes Medical Institute (to M.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You-Wen He or Michael J Bevan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YW., Li, H., Zhang, J. et al. The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens. Nat Immunol 5, 88–97 (2004). https://doi.org/10.1038/ni1021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing