Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis

Abstract

The identification of host factors that control susceptibility to infection has been hampered by a lack of amenable genetic systems. We established an in vivo model to determine the host factors that control pathogenesis and identified viral entry as a rate-limiting step for infection. We infected Drosophila melanogaster cells and adults with drosophila C virus and found that the clathrin-mediated endocytotic pathway is essential for both infection and pathogenesis. Heterozygosity for mutations in genes involved in endocytosis is sufficient to protect flies from pathogenicity, indicating the exquisite sensitivity and dependency of the virus on this pathway. Thus, this virus model provides a sensitive and efficient approach for identifying components required for pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCV is infectious in vitro.
Figure 2: DCV traffics through a vesicular compartment and requires a functional endocytic apparatus in vitro.
Figure 3: Clathrin-mediated endocytosis is required for DCV infection.
Figure 4: Autonomous requirement for dynamin in viral entry.

Similar content being viewed by others

References

  1. Alcami, A. & Koszinowski, U.H. Viral mechanisms of immune evasion. Immunol. Today 21, 447–455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ploegh, H.L. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Biron, C.A. Initial and innate responses to viral infections—pattern setting in immunity or disease. Curr. Opin. Microbiol. 2, 374–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Guidotti, L.G. & Chisari, F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Cooke, G.S. & Hill, A.V.S. Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2, 967–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Nomoto, A., Koike, S. & Aoki, J. Tissue tropism and species specificity of poliovirus infection. Trends Microbiol. 2, 47–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Goodbourn, S., Didcock, L. & Randall, R.E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 81, 2341–2364 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S.H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28, 42–45 (2001).

    CAS  PubMed  Google Scholar 

  10. Rueckert, R.R. in Fields Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 609–654 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  11. Johnson, K.N. & Christian, P.D. Molecular characterization of Drosophila C virus isolates. J. Invertebr. Pathol. 73, 248–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Fields, B.N., Knipe, D.M. & Howley, P.M. Virology (Lippincott-Raven, Philadelphia, 2001).

  13. Moore, N.F., Pullin, J.S., Crump, W.A. & Plus, N. The proteins expressed by different isolates of Drosophila C virus. Arch. Virol. 74, 21–30 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Klasse, P.J., Bron, R. & Marsh, M. Mechanisms of enveloped virus entry into animal cells. Adv. Drug Deliv. Rev. 34, 65–91 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayer, N. et al. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J. Virol. 72, 9645–9655 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carrasco, L. Picornavirus inhibitors. Pharmacol. Ther. 64, 215–290 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takei, K. & Haucke, V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 11, 385–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Narayanan, R. & Ramaswami, M. Endocytosis in Drosophila: progress, possibilities, prognostications. Exp. Cell Res. 271, 28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lloyd, V., Ramaswami, M. & Kramer, H. Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends Cell Biol. 8, 257–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Lautie-Harivel, N. & Thomas-Orillard, M. Location of Drosophila C virus target organs in Drosophila host population by an immunofluorescence technique. Biol. Cell 69, 35–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, M.S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. van der Bliek, A.M. & Meyerowitz, E.M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Damke, H., Binns, D.D., Ueda, H., Schmid, S.L. & Baba, T. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell 12, 2578–2589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moline, M.M., Southern, C. & Bejsovec, A. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999).

    CAS  PubMed  Google Scholar 

  25. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jousset, F.X., Plus, N., Croizier, G. & Thomas, M. [Existence in Drosophila of 2 groups of picornavirus with different biological and serological properties]. C R Acad. Sci. Hebd. Seances Acad. Sci. D 275, 3043–3046 (1972).

    CAS  PubMed  Google Scholar 

  27. Plus, N., Croizier, G., Jousset, F.X. & David, J. Picornaviruses of laboratory and wild Drosophila melanogaster: geographical distribution and serotypic composition. Ann. Microbiol. (Paris) 126, 107–117 (1975).

    CAS  Google Scholar 

  28. Thomas-Orillard, M., Jeune, B. & Cusset, G. Drosophila-host genetic control of susceptibility to Drosophila C virus. Genetics 140, 1289–1295 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Plus, N., Croizier, G., Reinganum, C. & Scott, P.D. Cricket paralysis virus and drosophila C virus: serological analysis and comparison of capsid polypeptides and host range. J. Invertebr. Pathol. 31, 296–302 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, L.K. & Ball, A.L. The Insect Viruses (eds. Fraenkel-Conrat, H. & Wangner, R.R.) (Plenum, New York, 1998).

    Book  Google Scholar 

  31. Gomariz-Zilber, E., Poras, M. & Thomas-Orillard, M. Drosophila C virus: experimental study of infectious yields and underlying pathology in Drosophila melanogaster laboratory populations. J. Invertebr. Pathol. 65, 243–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Johnson, K.N. & Christian, P.D. The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family. J. Gen. Virol. 79, 191–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Koyama, A.H. et al. Suppression of apoptotic and necrotic cell death by poliovirus. J. Gen. Virol. 82, 2965–2972 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Tucker, S.P., Thornton, C.L., Wimmer, E. & Compans, R.W. Vectorial release of poliovirus from polarized human intestinal epithelial cells. J. Virol. 67, 4274–4282 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kandolf, R., Selinka, H. & Klingel, K. in Molecular Biology of Picornaviruses (eds. Semler, B.L. & Wimmer, E.) 405–413 (ASM Press, Washington, DC, 2002).

    Google Scholar 

  36. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol. 12, 575–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. DeTulleo, L. & Kirchhausen, T. The clathrin endocytic pathway in viral infection. EMBO J. 17, 4585–4593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marsh, M. & Pelchen-Matthews, A. Endocytosis in viral replication. Traffic 1, 525–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Damke, H., Baba, T., van der Bliek, A.M. & Schmid, S.L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan, K.S. et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin- dependent synaptic vesicle recycling. Neuron 30, 197–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. DiAntonio, A., Parfitt, K.D. & Schwarz, T.L. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73, 1281–1290 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Littleton, J.T., Stern, M., Perin, M. & Bellen, H.J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA 91, 10888–10892 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Littleton, J.T. et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. von Poser, C. et al. Synaptotagmin regulation of coated pit assembly. J. Biol. Chem. 275, 30916–30924 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Haucke, V., Wenk, M.R., Chapman, E.R., Farsad, K. & De Camilli, P. Dual interaction of synaptotagmin with m2- and a-adaptin facilitates clathrin-coated pit nucleation. EMBO J. 19, 6011–6019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferguson, G.D., Anagnostaras, S.G., Silva, A.J. & Herschman, H.R. Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc. Natl. Acad. Sci. USA 97, 5598–5603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Christian for viral reagents, and members of the Perrimon lab, M. Gonzalez-Gaitan, J.T. Littleton, J.-M. Reichhart and T. Schwarz for fly strains. We thank M. Tudor for statistical analysis and discussions, and H. Ploegh, C. Roman, B. Stronach, E. Selva, L. van Parijs and S. Whelan for discussions and for critically reading the manuscript. We thank J. Kopinja and C. Villalta for injections, and S. Armknecht, and L. Hrdlicka for technical assistance. Supported by a National Institutes of Health National Research Service Award (S.C.) and RO1-AI051365-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Cherry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherry, S., Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat Immunol 5, 81–87 (2004). https://doi.org/10.1038/ni1019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing